Using GIS technologies and pattern recognition methods to identify ore-bearing structures of the Caucasus based on morphostructural data

№3 (2025)

Gorshkov A.I., Livinsky A.I.

УДК 550.341
https://doi.org/10.47148/1609-364X-2025-3-21-29

AbstractAbout the AuthorsReferences
Using GIS technologies and pattern recognition methods based on morphostructural data, ore-bearing structures in the Caucasus characterized by the predominance of polymetallic mineralization were determined. The structural basis of the study was the scheme of morphostructural zoning of the Caucasus, displaying the hierarchical system of crustal blocks, their boundaries – morphostructural lineaments, as well as the position of morphostructural nodes formed at the intersection of lineaments. It was found that small, medium and large metal deposits of the Caucasus are confined to morphostructural nodes. The objective of the work is to determine the characteristic geomorphological and geophysical features of metal deposit localization sites and, based on them, to identify potentially ore-bearing morphostructural nodes. The problem was solved using the learning recognition algorithm based on geomorphological and geophysical parameters characterizing the nodes. The parameter values were determined using the geoinformation system based on electronic geodatabases. The training sample of the recognition algorithm consisted of nodes in which metal deposits of the considered sizes were known. The recognition task was to divide all 237 nodes determined as a result of morphostructural zoning into two classes: ore-bearing and non-ore-bearing. As a result, 80 nodes out of 237 were assigned to the ore-bearing class. Potentially ore-bearing nodes are concentrated mainly in the central part of the Greater Caucasus and in the inner regions of the Lesser Caucasus.

Alexander I. Gorshkov
Candidate of Geological and Mineralogical Sciences (PhD),
Doctor of Physical and Mathematical Sciences (DSn)
Сhief Researcher
Institute of Earthquake Prediction Theory and Mathematical
Geophysics of the Russian Academy of Sciences
84/32, build. 14, Profsoyuznaya Str., Moscow, GSP – 7, 117997, Russia
е-mail: gorshkov@mitp.ru
ORCID ID: 0000-0001-5843-8468
SCOPUS Author ID: 7101853969
Researcher ID: D-3030-2018
SPIN code: 2092-7780
AuthorID: 58927

Artem I. Livinsky
Junior Researcher
Institute of Earthquake Prediction Theory and Mathematical
Geophysics of the Russian Academy of Sciences
84/32, build. 14, Profsoyuznaya Str., Moscow, GSP – 7, 117997, Russia
е-mail: artem@mitp.ru
SPIN-код: 2464-7854
AuthorID: 1056537

  1. Kuznetsov O.L., Cheremisina E.N. Geoinformatika, geoinformatsiya, geoinformatsionnye tekhnologii v prirodopol’zovanii [Geoinformatics, Geoinformation, Geoinformation Technologies in Environmental Management]. Geoinformatika. 2003;(2):3–10.
  2. Gorshkov A.I. Recognition of earthquake prone areas in the Alpine-Himalayan belt. Moscow: URSS; 2010. 468 p.
  3. Izosov L.A., Chuprynin V.I., Melnichenko Yu.I., Lee N.S. Morphostructural analysis in solving geological problems of eastern part of Asia. Geomorfologiya. 2018;(4):3–17. DOI: 10.7868/S0435428118040016.
  4. Lopatin D.V. Lineamentnaya tektonika i mestorozhdeniya-giganty Severnoi Evrazii [Lineament tectonics and giant deposits of Northern Eurasia]. Earth Observation and Remote Sensing. 2002;(2):77–91.
  5. Pertsov A.V., Antipov V.S., Gal’perov G.V., Turchenko S.I. Lineament network controlling the distribution of superlarge mineral deposits in Russia. Doklady Earth Sciences. 2002;383(2):134–136.
  6. Porwal A., Das R.D., Chaudhary B., Gonzalez-Alvarez I., Kreuzer O. Fuzzy Inference Systems for Prospectivity Modeling of Mineral Systems and a Case-Study for Prospectivity Mapping of Surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews. 2015;71:839–852. DOI: 10.1016/j.oregeorev.2014.10.016.
  7. Ivanyuk G.Yu., Goryainov P.M., Pakhomovskii Ya.A., Konopleva N.G., Yakovenchuk V.N., Bazai A. V., Kalashnikov A.O. Samoorganizatsiya rudnykh kompleksov: sinergeticheskie printsipy prognozirovaniya i poiskov mestorozhdenii poleznykh iskopaemykh [Self-organization of ore complexes: synergistic principles for forecasting and prospecting mineral deposits]. Moscow: Geokart-Geos; 2009. 390 p.
  8. Gorshkov A.I., Solov’ev A.A. Opredelenie kharakteristik rudonosnykh uzlov metodami raspoznavaniya obrazov [Determination of Ore Node Characteristics Using Pattern Recognition Methods]. In: Krupnye i superkrupnye mestorozhdeniya: zakonomernosti razmeshcheniya i usloviya obrazovaniya. Rundkvist D.V., ed. Moscow: IGEM RAN; 2004. pp. 381–390.
  9. Gorshkov A.I., Solov’ev A.A. Raspoznavanie oblika rudnykh mestorozhdenii v poyase Tetis [Recognition of Ore Deposit Features in the Tethys Belt]. In: Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. Vol.1. Global’nye zakonomernosti razmeshcheniya. Rundkvist D.V., ed. Moscow: IGEM RAN; 2006. pp. 361–374.
  10. Gorshkov A.I., Novikova O.V., Livinskii A.I. Application of Pattern Recognition Methods to Study Spatial Localization of Polymetallic Mineralization in the Altai-Sayan Region. Izvestiya, Physics of the Solid Earth. 2024;(5):57–68.
  11. Gatinskii Yu.G., Tkachev A.V., Rundkvist D.V. Geodinamicheskie aspekty raspredeleniya krupnykh i superkrupnykh mestorozhdenii v global’nykh metallogenicheskikh poyasakh i provintsiyakh [Geodynamic aspects of the distribution of large and super-large deposits in global metallogenic belts and provinces]. In: Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. Vol. 1. Rundkvist D.V., ed. Moscow: IGEM RAN; 2006. pp. 207–251.
  12. Tkachev A.V., Bulov S.V., Rundqvist D.V., Pokhno S.A., Vishnevskaya N.A., Nikonov R.A. WEB GIS “World’s Largest Deposits”. Geoinformatika. 2015;(1):47–59.
  13. Kotkin V.A., Malukhin G.N., Melnikova A.V., Lazarev A.N., Lagonskiy N.N. Quantitative estimation of the accuracy and reliability of proven reserves of solid mineral deposits. 21 Century Subsoil Use. 2009;(1):29–33.
  14. Gel’fand I.M., Guberman Sh.A., Keilis-Borok V.I. Knopov L., Press F.S., Rantsman E.Ya., Rotvain I.M., Sadovskii A.M. Usloviya vozniknoveniya sil’nykh zemletryasenii (Kaliforniya i nekotorye drugie regiony) [Conditions for the occurrence of strong earthquakes (California and other regions)]. Computational Seismology. 1976;9:3–91.
  15. Rundkvist D.V., Rundkvist I.K. Metallogeniya na rubezhe stoletiya [Metallogeny at the Turn of the Century]. Herald of the Russian Academy of Sciences. 1994;64(7):83–85.

Key words: morphostructural control of mineralization; Kora 3 recognition algorithm; potentially ore-bearing nodes

Section: Application of GIS technologies