Modified algorithmic system FCAZm and strong earthquake-prone areas in California.

№2 (2018)

Dzeboev B.A.,Krasnoperov R.I.,Belov I.O., Barykina Yu.V.,Vavilin E.V.

AbstractAbout the AuthorsReferences
Recognition of strong (М ≥ 6½) earthquake-prone areas in California has been performed using the modified version (FCAZm) of the original algorithmic system FCAZ (Formalized Clustering And Zoning). This system is the part of the Discrete Mathematical Analysis (DMA) – the original approach towards analysis of geological and geophysical discrete data, which was developed in the Geophysical Center of RAS. The recognition objects used by the system are represented solely by information on the earthquake epicenters. For the territory of California, the earthquake epicenters with M ≥ 3.0 were selected. Highly-seismic FCAZm-zones, recognized in California, agree well with the location of earthquake epicenters with М ≥ 6½. The epicenters of practically all strong earthquakes fall within the FCAZm-zones. The veracity of the recognized zones was confirmed by results of the control experiments «individual seismic history» and «complete seismic history». The FCAZm-zones have been compared with the ones earlier recognized by the classical EPA-method (1976) and by the initial version of the FCAZ system (2014). It was revealed that within California the area of the FCAZm-zones is twice smaller than the area of the EPA-zones. In addition, the FCAZm-zones better agree with the М ≥ 6½-earthquake epicenters than the EPA-zones. The results of this research allow to suggest the high veracity of the interpretation of FCAZm-zones as the strong earthquake-prone areas in California. The FCAZm-zones agree well with the classical EPA-zones and improve them, and make them clearer

Dzeboev Boris, PhD, Geophysical Center of the Russian Academy of Sciences, Senior research scientist, Geophysical Institute of Vladikavkaz Scientific Center of the Russian Academy of Sciences, Research scientist. 119296, Moscow, ul. Molodezhnaya, 3. E-mail: b.dzeboev@gcras.ru.

Krasnoperov Roman, PhD, Geophysical Center of the Russian Academy of Sciences, Senior research scientist. 119296, Moscow, ul. Molodezhnaya, 3. E-mail: r.krasnoperov@gсras.ru.

Belov Ivan, Geophysical Center of the Russian Academy of Sciences, Junior research scientist. 119296, Moscow, ul. Molodezhnaya, 3. E-mail: i.belov@gcras.ru.

Barykina Yuliya, Geophysical Center of the Russian Academy of Sciences, Junior research scientist. 119296, Moscow, ul. Molodezhnaya, 3. E-mail: u.barykina@gcras.ru.Center of the Russian Academy of Sciences, Junior research scientist. E-mail: u.barykina@gcras.ru

Vavilin Evgeniy, Geophysical Center of the Russian Academy of Sciences, Junior research scientist. 119296, Moscow, ul. Molodezhnaya, 3. E-mail: e.vavilin@gcras.ru.

  1. Agayan S.M., Soloviev A.A. Recognition of dense areas in metric spaces basing on crystallization // System Research and Information Technologies. 2004. No. 2. P. 7-23.
  2. Alekseevskaya M.A., Gabrielov A.M., Gvishiani A.D., Gel’fand I.M., Rantsman E.Ya. Morphostructural zoning of mountain regions by formal criteria // Vychislitel’naya seismologiya. Vyp. 10: Raspoznavanie i spektral’nyi analiz v seismologii (Compuitational Seismology. V. 10: Pattern Recognition and Spectral Analysis in Seismology) / Ed. V.I. Keilis-Borok. Moscow, 1977. P. 33-49.
  3. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R. Discrete mathematical analysis and monitoring of volcanoes // Inzhenernaya Ekologia. 2008. No. 5. P. 26-31.
  4. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R. Mathematical Methods of Geoinformatics. I. A New Approach to Clusterization // Cybernetics and Systems Analysis. 2002. V. 38, Is. 2. P. 238-254.
  5. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Soloviev A.A. Discrete mathematical analysis and applications in geology and geophysics // Vestnik KRAUNTs. Nauki o Zemle. 2010. № 2. P. 109-125.
  6. Gvishiani A.D., Agayan S.M., Dobrovolsky M.N., Dzeboev B.A., Objective epicenter classification and recognition of the areas of possible occurrence of large earthquakes in California // Geoinformatika. 2013. No. 2. P. 44-57.
  7. Gvishiani A.D., Belov S.V., Agayan S.M., Rodkin M.V., Morozov V.N., Tatarinov V.N., Bogoutdinov Sh.R. Geo-information technologies: artificial intelligence methods in the assessment of tectonic stability of Nizhnekanskii Massif // Inzhenernaya Ekologia. 2008. No. 2. P. 3-14.
  8. Gvishiani A.D., Gorshkov A.I., Rantsman E.Ya., Cisternas A, Soloviev A.A. Prognozirovanie mest zemletryasenii v regionakh umerennoi seismichnosti (Recognition of Earthquake-Prone Areas in the Regions of Moderate Seismicity), Moscow : Nauka, 1988.
  9. Gvishiani A.D., Dzeboev B.A. Assessment of seismic hazard in choosing of a radioactive waste disposal location // Gornyi Zhurnal (Mining Journal). 2015. No. 10. P. 39-43. DOI: 10.17580/gzh.2015.10.07.
  10. Gvishiani A.D., Dzeboev B.A., Agayan S.M. FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts // Izvestiya. Physics of the Solid Earth. 2016. V. 52. Is. 4. P. 461-491. DOI: 10.1134/S1069351316040017.
  11. Gvishiani A., Dzeboev B., Agayan S. A new approach to recognition of the earthquake-prone areas in the Caucasus // Izvestiya, Physics of the Solid Earth. 2013. V. 49, Is. 6. P. 747-766. DOI: 10.1134/S1069351313060049.
  12. Gvishiani A.D., Dzeboev B.A., Sergeyeva N.A., Rybkina A.I. Formalized Clustering and the Significant Earthquake-Prone Areas in the Crimean Peninsula and Northwest Caucasus // Izvestiya. Physics of the Solid Earth. 2017. V. 53. Is. 3. P. 353-365. DOI: 10.1134/S106935131703003X.
  13. Gvishiani A.D., Diament M., Mikhailov V.O., Galdeano A., Agayan S.M., Bogoutdinov Sh.R., Graeva E.M., Artificial intelligence algorithms for magnetic anomaly clustering // Izvestiya, Physics of the Solid Earth. 2002. V. 38. Is. 7. P. 545-559.
  14. Gelfand I.M., Guberman Sh.A., Keilis-Borok V.I., Knopoff L., Press F.S., Rantsman E.Ya., Rotvain I.M., Sadovskii A.M. Criteria of the origin of strong earthquakes (California and some other regions), in Vychislitel’naya seismologiya. Vyp. 9. Issledovanie seismichnosti i modelei Zemli (Computational Seismology: Study of Seismicity and Models of the Earth) / Ed. V.I. Keilis-Borok, Moscow, 1976. P. 3-91.
  15. Dzeboev B.A. Clustering in the recognition of strong earthquake-prone areas in California and Caucasus // Cand. Sci. (Phys-Math.) Dissertation. Moscow : Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 2014.
  16. Soloviev A.A., Gvishiani A.D., Gorshkov A.I., Dobrovolsky M.N., Novikova O.V. Recognition of earthquake-prone areas: Methodology and analysis of the results // Izvestiya, Physics of the Solid Earth. 2014. V. 50, Is. 2. P. 151-168. DOI: 10.1134/S1069351314020116.
  17. Agayan S.M., Bogoutdinov S.R., Dobrovolsky M.N. Discrete perfect sets and their application in cluster analysis // Cybernetics and Systems Analysis. 2014. V. 50, Is. 2. P. 176-190.
  18. Alekseevskaya M., Gabrielov A., Gelfand I., Gvishiani A., Rantsman E. Formal morphostructural zoning of mountain territories // Geophysics. 1977. No. 42 (2). P. 227-233.
  19. Folger P. Earthquakes: Risk, Detection, Warning, and Research // CRS Report for Congress, 2013. 22 p. URL: https://fas.org/sgp/crs/misc/RL33861.pdf (date of access: 16.05.2017).
  20. Gvishiani A., Dobrovolsky M., Agayan S., Dzeboev B. Fuzzy-based clustering of epicenters and strong earthquake-prone areas // Environmental Engineering and Management Journal. 2013. V. 12, No. 1. P. 1-10.
  21. http://moho.ess.ucla.edu/~werner/FORECASTS/index.html (date of access: 16.05.2017).
  22. http://www.ncedc.org/anss/catalog-search.html (date of access: 16.05.2017).
  23. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs // Community Online Resource for Statistical Seismicity Analysis, 2012. 45 p. DOI: 10.5078/corssa-00180805. URL: http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/Mignan-Woessner-2012-CORSSA-Magnitude-of-completeness.pdf (date of access: 16.05.2017).
  24. Reasenberg P. Second-order moment of central California seismicity, 1969-1982 // Journal of Geophysical Research. 1985. V. 90, Is. B7. P. 5479-5495.
  25. Shi Y., Bolt B.A. The standard error of the magnitude-frequency b-value // Bulletin of the Seismological Society of America. 1982. V. 72. P. 1677-1687.
  26. USGS Fact Sheet 2008-3027 : Forecasting California’s Earthquakes – What Can We Expect in the Next 30 Years? (2008). URL: http://pubs.usgs.gov/fs/2008/3027/fs2008-3027.pdf (date of access: 16.05.2017).
  27. Wiemer S., Wyss M. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan // Bulletin of the Seismological Society of America. 2000, August. V. 90, Is. 4. P. 859-869.
  28. Wyss M., Wiemer S., Zuniga R. ZMAP. A tool for analyses of seismicity patterns. Typical applications and uses : a cookbook, 2001. 57 p.
  29. Zaliapin I., Keilis-Borok V.I., Axen G. Premonitory spreading of seismicity over the faults’ network in southern California : Precursor Accord // Journal of Geophysical Research. 2002. V. 107, Is. B10, 2221. 15 p.

Section: Geoinformation systems

Keywords: recognition of strong earthquake-prone areas, clustering, EPA (earthquake-prone areas), Discrete Mathematical Analysis (DMA), DPS (Discrete Perfect Sets) algorithm, FCAZ (Formalized Clustering And Zoning) algorithmic system.