Parameters of origin and evolution of the mantle-crust migrant.

№2 (2019)

Vasiliev V.I.Vasilieva E.V.,Zhatnuev N.S.Sanzhiev G.D.

AbstractAbout the AuthorsReferences
The conceptual and mathematic models of the transport of a mantle substance with reduced relative to the enclosing medium density to the Earth crust are introduced. Based on them, the platform for parametric modeling of the substance accumulation in a depth chamber, formation and evolution of the mantle-crust migrant has been created as software Vladi Overpressure. The software provides to simulate forming of the depth accumulative chamber of three different shapes as well as forming and evolution of the mantle-crust migrant of three different shapes. The rate of the migrant ascent can be calculated by five equations (Newton’s, von Rittinger’s, Stokes’s, Allen-Lyaschenko’s, Spera’s) that relate the following parameters: density, strength, temperature, dynamic viscosity, yield strength of the enclosing medium, and migrant density.

Vasiliev Vladimir Igorevich, candidate of geological and mineralogical sciences, science researcher Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 670047, Buryat Republic, Ulan-Ude, Sakhyanova str., 6A. E-mail: geovladi@ginst.ru.

Vasilieva Eugenia Vladimirovna, candidate of geological and mineralogical sciences, science researcher Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 670047, Buryat Republic, Ulan-Ude, Sakhyanova str., 6A. E-mail: geovladi@ginst.ru.

Zhatnuev Nikolay Sergeevich, doctor of geological and mineralogical sciences, senior science researcher Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 670047, Buryat Republic, Ulan-Ude, Sakhyanova str., 6A. E-mail: zhat@ginst.ru.

Sanzhiev Galsan Dorzhievich, engineer Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 670047, Buryat Republic, Ulan-Ude, Sakhyanova str., 6A. E-mail: sandorzik@mail.ru.

  1. Large Tolbachik fissure eruption. M. : Science, 1984. 638 p.
  2. Burmin V. Distribution of density and elastic parameters in the Earth // Physics of the Earth. 2006. No. 7. P. 76-88.
  3. Vasiliev V.I., Chudnenko K.V., Zhatnuev N.S., Vasilieva E.V. The complex computer modeling of geological objects on the example of a section of subduction zone // Geoinformatics. 2009. No. 3. P. 15-30.
  4. Vasiliev V.I., Damdinov B.B. The physico-chemical model of ore-bearing rodingites and magnetite-chlorite-epidote metasomatites of Eastern Sayan // Lithosphere. 2013. No. 5. P. 72-96.
  5. Vasiliev V.I., Zhatnuev N.S. The thermodynamic model of evolution of fluid-containing fissure in the plastic-brittle transition // Physical-chemical and petrophysical researches in Earth’s sciences : Pro-ceedings of the Tenth International Conference. Moscow : IGEM RAS, 2009. P. 78-82.
  6. Vasiliev V.I., Zhatnuev N.S., Rychagov S.N., Vasilieva E.V., Sanzhiev G.D. Mass-transfer and mineral formation in magmatic-hydrothermal systems based on the results of numerical physical-chemical modeling // Lithosphere. 2010. No. 3. P. 145-152.
  7. Vasilieva E.V., Vasiliev V.I., Zhatnuev N.S., Sanzhiev G.D. The tectonophysical study of the dynamics of fluid-contained cavities in a solid plastic medium // Proceedings of the III Russian research conference. M. : IPE RAS, 2012. V. 1. P. 265-268.
  8. Vasilieva E.V., Vasiliev V.I., Smirnova O.K. The physical and chemical model of the flow of technogenic waters of Bom-Gorkhonsky tungsten deposit to the ecological environment of Zun-Tignya river (West Transbaikalia) // Mineralogy of Technogenesis-2015. Miass : Institute of Mineralogy UB RAS, 2015. P. 155-159.
  9. Gordienko V.V. About viscosity of the tectonosphere substance // Geology and minerals of the World Ocean. 2017. No. 1. P. 45-57.
  10. Zhatnuev N.S. Dynamics of deep magmas // Reports of the Russian Academy of Sciences. 2010. V. 430, No. 6. P. 787-791.
  11. Zhatnuev N.S. The fissure-fluid systems in a zone of plastics deformations // Reports of the Russian Academy of Sciences. 2005. V. 404, No. 3. P. 380-384.
  12. Zhatnuev N.S., Vasiliev V.I., Sanzhiev G.D. Ascending fluid migration in the mantle. Conceptual, numerical and analog models // National geology. 2013. No. 3. P. 24-30.
  13. Ivanov S.N. About rheological models of the earth’s crust: a critical consideration. Ekaterinburg : IGG URAN, 1998. 40 p.
  14. Lyaschenko P.V. The gravity enrichment methods. M. : Gostoptekhizdat, 1940. 359 p.
  15. Newton I. Philosophiae naturalis principia mathematica. M.: Science, 1989. 688 p.
  16. Willie R. Petrogenesis and physics of the Earth // Evolution ign. rocks. M. : Mir, 1983. P. 468-503.
  17. Faradzhev T.G., Fataliyev M.D. Rocks of Azerbaijan, and the ways of their effective destruction. Baku : Azernesr, 1965. 137 p.
  18. Allen D.N., Southwell R.V. Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder // The Quarterly Journal of Mechanics and Applied Mathematics. 1955. V. 8. P. 129-145.
  19. Ohtani E., Zhao D. The role of water in the deep upper mantle and transition zone // Russian Geology and Geophysics. 2009. V. 50, No. 12. P. 1073-1078.
  20. Rittinger P.R. Lehrbuch der Aufbereitungskunde. Berlin : Verlag von Ernst&Korn, 1867. 596 p.
  21. Spera F.J. Carbon dioxide in petrogenesis. Contrib. Mineral. Petrol. 1984. V. 88. P. 217-232.
  22. Stokes G.G. Mathematical and physical papers. Cambridge : University Press, 1880. V. 1. 328 p.

Section: Modeling geo objects and geo-processes

Keywords: mantle-crust migrant, overpressure, parametric modeling.