Dynamics of the physical properties of sandstone within the depth of annual ground temperature variation, Southern Yakutia (Neryungri case study)

№2 (2024)

Neradovskii L.G.

УДК 552.08
https://doi.org/10.47148/1609-364X-2024-2-36-44

AbstractAbout the AuthorReferences
Using available geotechnical laboratory testing data for residential district M in the city of Neryungri, this study presents the first generalized probabilistic estimates of the variation in physico-mechanical properties of the sandstone mass within the depth of annual temperature variation. Although the individual values of bulk density, dry strength and softening coefficient vary randomly within the sampling depth range of 1–18 m, the mean interval estimates systematically increase with depth, forming a zonal system of three boundaries. Occurring at the first boundary at a depth of 2,0 m is weathered sandstone with a blocky structure. The second boundary is at 6,0–7,0 m depth where the sandstone mass is strongly fissured and has a seamy structure. The third boundary is at 10–15 m with very strong sandstone of massive structure. The upper part of the zonal system with an average bulk density of 2,53 g/cm3 is characterized by the greatest average strength loss (47 %) from initial strength of 70,2 MPa. The lower part with bulk densities of 2,58–2,61 g/cm3 and strengths of 110,00–115,30 MPa exhibits minimal strength loss, 22 %. Overall, the sandstone mass can serve as competent foundation for engineering structures provided that its air-dry condition is maintained.
Leonid G. Neradovskii
Doctor of Technical Sciences, Senior Researcher at the Laboratory of Engineering Geocryology
Melnikov Permafrost Institute SB RAS
36, Merzlotnaya St., Yakutsk, 677010, Russia
е-mail: leoner@mpi.ysn.ru
  1. Neradovskii L.G. Technology for studying the electrophysical characteristics of sedimentary rocks of South Yakutia at the railway station Kyurgellyakh using the method of remote inductive probing. Geoinformatika. 2023; (4):39–51. https://doi.org/10.47148/1609-364X-2023-4-39-51.
  2. Akimov A.T. Voprosy teorii i praktiki elektrorazvedki merzlyh porod [Theoretical and practical issues of electrical exploration of permafrost]. In: Proc. of PNIIIS, USSR Gosstroy. Vol. 6. Geophysical Methods in Engineering Investigations. Moscow: The Industrial Research Institute in Construction; 1971. p. 6–73.
  3. Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenernogeologicheskie usloviya Aldanskogo gornopromyshlennogo rajona [Southern Yakutia: permafrost-hydrogeological and engineering-geological conditions of the Aldan mining region]. V.A. Kudryavtsev (Ed.). Moscow: MGU; 1975. 444 p.
  4. Zhelinskij V.M. Mezozojskaya uglenosnaya formaciya Yuzhnoj Yakutii [Mesozoic coal-bearing formation of South Yakutia]. Novosibirsk: Nauka; 1980. 119 p.
  5. Buldovich S.N., Melentiev V.S., Naumov M.S., Furikevich O.S. Rol’ novejshih razryvnyh narushenij v formirovanii merzlotno-gidrogeologicheskih uslovij (na primere Neryungrinskoj sinklinali Yuzhno-Yakutskogo mezozojskogo progiba) [The role of recent faults in the formation of permafrost and hydrogeological conditions (case study of the Neryungri syncline, South-Yakutian Mesozoic trough)]. In: Merzlotnye Issledovania. Iss 15. Moscow: MGU; 1976, p. 120–125.
  6. Mokshantsev, K.B., Gornshtein, D.K., Gusev, G.S. et al. Tektonicheskoe stroenie Yakutskoj ASSR [The tectonic structure of Yakut ASSR]. Moscow: Nauka Publ.; 1964. 240 p.
  7. Shesternev D.M. Kriogipergenez i geotekhnicheskie svojstv porod kriolitozony [Cryohypergenesis and geotechnical properties of permafrost rocks]. Novosibirsk: SB RAS; 2001. 266 p.
  8. Zheleznyak M.N. Geotemperaturnoe pole i kriolitozona yugo-vostoka Sibirskoj platformy [Geotemperature field and permafrost in the south-eastern Siberian Platform]. Novosibirsk: Nauka Publ.; 2015. 227 p.
  9. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and means of complex data analysis]. Moscow: FORUM: INFRA–M; 2006. 512 p.
  10. Levkovich A.I. Metodika obosnovaniya sostava i ob”yomov inzhenerno-geologicheskih izyskanij dlya stroitel’stva razlichnyh tipov zdanij i sooruzhenij promyshlennogo, sel’skohozyajstvennogo i zhilishchno-grazhdanskogo naznacheniya v rajonah rasprostraneniya vechnomyorzlyh gruntov s uchyotom trebovanij proektirovaniya [Methodology for defining the scope and content of engineering-geological investigations for different types of industrial, agricultural and residential buildings and structures on permafrost with consideration of design requirements]. Moscow: Gosstry RSFSR, NPO Stroyizyskania; 1989. 173 p.
  11. Lomtadze V.D. Fiziko-mekhanicheskie svojstva gornyh porod. Metody laboratornyh issledovanij: Uchebnoe posobie [Physico-mechanical properties of rocks. Laboratory testing methods. Textbook]. Leningrad: Nedra; 1990. 328 p.
  12. GOST 25100-2020. Grunty. Klassifikaciya [Soils. Classification]. Moscow: Standartinform; 2020. 38 p.
  13. GOST 21135.2-84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii [Rocks. Methods for determining uniaxial compression strength]. Moscow: Izd-vo standartov; 1984. 7 p.
  14. Posobie po proektirovaniyu osnovanij zdanij i sooruzhenij (k SNiP 2.02.01-83) / NIIOSP im. N.M. Gersevanova Gosstroya SSSR [Guidelines for foundation design (ref. to SNiP 2.02.01-83) / N.M. Research Center of Construction, USSR Building Committee]. Moscow: Stroyizdat; 1986. 415 p.
  15. Rebinder P.A. Poverhnostnye yavleniya v dispersnyh sistemah. Kolloidnaya himiya: izbrannye trudy [Surface phenomena in disperse systems. Colloid Chemistry: Selected Publications]. Moscow: Nauka; 1978. 368 p.
  16. Frolov A.D. Elektricheskie i uprugie svojstva myorzlyh porod i l’dov [Electrical and elastic properties of frozen soils and ice]. Pushchino: ONTI PNTS RAN; 1998. 515 p.

Key words: Neryungri City; District M; ground layer of annual temperature variation; sandstone mass; bulk density; strength; softening.

Раздел: Моделирование геообъектов и геопроцессов