The potential of remote sensing materials to restore of a highly detailed DEM of the floodable part of the river floodplain of large rivers

№4 (2022)

Krasnopeyev S.M., Nerov I.O., Bugaets A.N.

УДК 004.550
https://doi.org/10.47148/1609-364X-2022-4-28-35

AbstractAbout the AuthorsReferences
The results of the application of remote sensing data are presented to solve the problem of constructing a highly detailed DEM of floodable part of the river floodplain in order to improve the accuracy of numerical hydrodynamic modeling.
Hydrodynamic modeling is necessary to predict the spread of a flood wave and to ensure activities to mitigate the scale of the negative impact of waters in the Amur River basin, which is one of the most flood-prone areas of the Russian Federation. Remote sensing image data acquired from domestic spacecraft “Resurs-P” and “Canopus-V” allowed to fix the actual configuration of the Amur riverbed, and the use of a time series of satellite images together with the results of hydrological monitoring of the water level by the observation network of Roshydromet increased the degree of correctness of reproducing the relief of the floodable part of the river floodplain. The results of the experiment on a model site in the area of the village of Troitskoye (lower course of the Amur River), characterized by minor height changes, allow us to assert that a time series of satellite images, taking into account the results of hydrological monitoring of the water level by the observation network of Roshydromet, can serve as a source of sufficiently detailed information about the relief of the flooded area of the river floodplain of large rivers.
Sergey M. Krasnopeyev
Candidate of Physical and Mathematical Sciences,
Leading Researcher
Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences (PGI FEB RAS)
7, Radio str., Vladivostok, 690041, Russia
е-mail: sergeikr@tigdvo.ru
ORCID ID: 0000-0001-8409-7062
SCOPUS ID: 244809700
Researcher ID: K-2970-2018
SPIN: 9063-6187

Igor O. Nerov
Head of the Water Management Department
Russian Research Institute for Integrated Use and Protection of Water Resources, Far Eastern Branch
66, Krasnoe Znamya Ave., Vladivostok, 690014, Russia
е-mail: inerov@bk.ru
SPIN: 6387-7650

Andrey N. Bugaets
Phd in technical sciences, head of the laboratory
Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences (PGI FEB RAS)
7, Radio str., Vladivostok, 690041, Russia
е-mail: andreybugaets@yandex.ru
WOS Research ID: Q-5730-2016
SCOPUS ID: 6507642073
SPIN: 1441-0287

  1. Makarov A.V., Nerov I.O. On the issue of information-analytical support of activity of the interdepartmental working group on regulation of work
    at the Bureya, and Zeya Nizhne-Bureiskaya reservoirs during the passage of floods in the Amur River basin. In: Clean Water of Russia: proceedings
    of the XIV International Scientific and Practical Symposium and Exhibition (Ekaterinburg, 18-20 April 2017). p. 68–72. Available at: https://wrm.ru/
    files/chvr2017.pdf (accessed 15.11.2022).
  2. Resursy poverkhnostnykh vod SSSR. Vol. 18. Dal’nii Vostok. Muranov A.P. (ed.). Iss. 1. Verkhnii i srednii Amur (ot istokov do s. Pompeevka).
    [Surface water resources of the USSR. Vol. 18. Far East. Iss. 1. Upper and Middle Amur (from the origins to the village of Pompeevka)]. Leningrad:
    Gidrometeoizdat; 1966. 782 p.
  3. Navodnenie na Dal’nem Vostoke v 2013 godu [Flooding in the Far East in 2013]. RIA Novosti. 20.07.2014. Available at: https://ria.
    ru/20140720/1016605356.html (accessed 15.11.2022).
  4. Yasakova E. Ushcherb ot navodnenii v Irkutskoi oblasti otsenili v 35 mlrd. rublei [Damage from floods in the Irkutsk region was estimated at 35
    billion]. Rossiyskaya Gazeta. 22.08.2019. Available at: https://rg.ru/2019/08/22/reg-sibfo/ushcherb-ot-navodnenij-v-irkutskoj-oblasti-ocenili-v-35-mlrd-rublej.html (accessed 15.11.2022).
  5. GIS “METEO DV”. Geoinformation System of the Far Eastern region of the Russian Federation. Available at: https://meteo-dv.ru/en/ (accessed
    15.11.2022).
  6. Geoinformatsionnaya sistema modelirovaniya pavodka razrabotana v Novosibirske [The flood modeling geographic information system is
    developed in Novosibirsk]. Interfax-Russia. 27.01.2017. Available at: https://www.interfax-russia.ru/moscow/novosti-mchs/geoinformacionnayasistema-
    modelirovaniya-pavodka-razrabotana-v-novosibirske (accessed 15.11.2022).
  7. Novikov A.A., Kirechko M.V. Ispol’zovanie dannykh DZZ i gidrologicheskikh nablyudenii v tsifrovoi onlain platforme «Servis upravleniya riskami
    opasnykh prirodnykh protsessov» [The use of remote sensing data and hydrological observations in the digital online platform “Service for Risk
    Management of hazardous natural processes”]. Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii. 2020;1:56–62. Available at: https://www.
    roscosmos.ru/media/pdf/dzz/dzz-2020-01_n.pdf (accessed 15.11.2022).
  8. Nerov I.O., Bugaets A.N., Krasnopeev S.M., Motovilov Yu.G., Kalugin A.S., Belikov V.V., Gonchukov L.V., Sokolov O.V., Rozanov V.V. System of
    information support of hydrological modeling in the basin of the Amur river. In: Nauka i innovatsionnye tekhnologii na sluzhbe vodnoi bezopasnosti.
    Iss. 13. Tashkent: NITS MKVK; 2019. pp. 230–237.
  9. Yamazaki D., Baugh C.A., Bates P.D., Kanae S., Alsdorf D.E., Oki T. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling.
    Journal of Hydrology. 2012;436–437:81–91. DOI: 10.1016/j.jhydrol.2012.02.045.
  10. Jung H.C., Jasinski M.F. Sensitivity of a floodplain hydrodynamic model to satellite-based DEM scale and accuracy: Case study – the Atchafalaya
    Basin. Remote Sensing. 2015;7(6):7938–7958. DOI: 10.3390/rs70607938.
  11. Nerov I.O., Krasnopeyev S.M., Bugaets A.N., Belikov V.V., Glotko A.V., Borisova N.M., Vasileva E.S., Krolevetskaya Yu.V. Experience in digital
    terrain model generation for hydrodynamic modeling in the Amur River Basin. Vestnik of the Far East Branch of the Russian Academy of Sciences.
    2021;220:45–55. DOI: 10.37102/0869-7698_2021_220_06_04.
  12.  Kravtsova V.I., Vachnina O.V., Kharkovetz E.G. Features of remote sensing techniques for study the dynamics of northern river deltas (using the
    example of the Yenisei river delta). Geoinformatika. 2019;4:54–64.
  13. Kravtsova V., Vachnina O., Lebedeva S., Charkovets E., Chalova E. Features of the methodology for studying the dynamics of tidal rivers deltas
    in the northern regions using satellite images (the Northern Dvina as example). Geoinformatika. 2022;1:17–31. DOI: 10.47148/1609-364X-2022-
    1-17-31.

Key words: digital elevation model, remote sensing, floodplain of large rivers

Section: Conference proceedings ITES-2022