Spectral classification of space agricultural landscape images using ranking of channels according to the highest informativity

№3 (2022)

УДК 504.064.37, 004.93.11, 633
https://doi.org/10.47148/1609-364X-2022-3-15-29

Vakulenko D.V., Kravets A.G.

AbstractAbout the AuthorsReferences
This paper explores the question of classification of a series of space images for analysis of the processes of growing crops, using the spectral channels of minimum dimension. This study attempts to give a partial answer to the question: how to detect the problems in growing processes much faster and with a high level of accuracy? In this paper, we report on the results of the survey conducted to determine the existing methods and tools for spectral analysis of multispectral space images for solving forecasting and search problems of mapping the agricultural objects. The present work extends the use of the general image classification process by the computational procedure of ranking spectral channels according to the value of spectral information. The structure of the classification rule based on the informativity indicator of the spectral channel has been developed. The proposed prototype of a geospatial recognition system will provide a digital stratification landscape plan.
Darya V. Vakulenko
Post-Graduate Student of Volgograd State Technical University
28 Lenin Ave., Volgograd, 400005, Russia
e-mail: dsvklnk@gmail.com

Alla G. Kravets
Doctor of Technical Science, Professor of CAD department
of Volgograd State Technical University
28 Lenin Ave., Volgograd, 400005, Russia
e-mail: agk@gde.ru

  1. Astakhova T., Kolbanev M., Romanova A., Shamin A. Model of digital agriculture. International. Journal of Open Information Technologies. 2019;7(12):63–69.
  2. Vakulenko D.V., Kravets A.G. Reengineering of business processes of agroindustrial enterprises in conditions of through digital transformation. Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2021;3:115-125. DOI: 10.24143/2072-9502-2021-3-115-125.
  3. Gafarov F.M., Galimyanov A.F. Iskusstvennye neironnye seti i ikh prilozheniya: ucheb. posobie [Artificial neural networks and applications: study guide]. Kazan’: Izd-vo Kazanskogo universiteta; 2018. 121p.
  4. Zhilenev M. Overview of application multispectral remote sensing data and combinations of data for digital processing. Geomatics. 2009;3:56–65.
  5. Knizhnikov Yu.F., Kravtsova V.I., Tutubalina O.V. Aehrokosmicheskie metody geograficheskikh issledovanii: uchebnik [Aerospace methods of geographical research: a textbook]. Moscow; Akademiya, 2011. 416 p.
  6. Kostikova A. Interpretatsiya kombinatsii kanalov dannykh Landsat TM/ETM + [Interpretation of combinations of Landsat TM / ETM + data channels]. 2005. Available at: http://gis-lab.info/qa/landsat-bandcomb.html (accessed: 13.09.2021).
  7. Makarov V.Z., Gusev V.A., Shlapak P.A., Reshetarova D.A. The Selection of the Optimal Detection Method for Agricultural Crops by Satellite Images of High Resolution (the Saratov Volga Region as an Example). Izvestiya of Saratov University. New Series. Series: Earth Sciences. 2020;20(3):162–170. DOI: https://doi.org/10.18500/1819-7663-2020-20-3-162-170.
  8. Prognoz nauchno-tekhnologicheskogo razvitiya agropromyshlennogo kompleksa Rossiiskoi Federatsii na period do 2030 g. [Forecast of scientific and technological development of the agro-industrial complex of the Russian Federation for the period up to 2030]. Moscow: NIU VSHEH, 2017. 140 p.
  9. Tarasov A.V., Shikhov A.N., Shabalina T.V. Detection of forest disturbances in Sentinel-2. Current problems in remote sensing of the Earth from space. 2011;18(3):51-64. DOI: 10.21046/2070-7401-2021-18-3-51-64.
  10. Chaban L.N. Metody i algoritmy raspoznavaniya obrazov pri avtomatizirovannoi deshifratsii dannykh DZZ: uchebnoe posobie [Methods and algorithms for pattern recognition in automated decryption of remote sensing data: a tutorial]. Moscow: MIIGAIK; 2016. 94 p.
  11. Shikhov A.N., Gerasimov A.P., Ponomarchuk A.I., Perminova E.S. Tematicheskoe deshifrirovanie i interpretatsiya kosmicheskikh snimkov srednego i vysokogo prostranstvennogo razresheniya: ucheb. posobie [Thematic interpretation and photointerpretation of space images of medium and high spatial resolution: tutorial]. Perm’: PGNIU; 2020. 191 p. Available at: http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/shikhov-gerasimov-ponomarchuk-perminova-tematicheskoe-deshifrovanie-i-interpretaciya-kosmicheskih-snimkov.pdf (accessed: 13.09.2022).
  12. Golubev A., Sadovnikova N., Parygin D., Glinyanova I., Finogeev A., Shcherbakov M. Woody Plants Area Estimation using Ordinary Satellite Images and Deep Learning. In: Alexandrov D., Boukhanovsky A., Chugunov A., Kabanov Y., Koltsova O. (eds.). Digital Transformation and Global Society. DTGS 2018 (Communications in Computer and Information Science, vol 858.) Cham: Springer; 2018. pp. 302-313. DOI:10.1007/978-3-030-02843-5_24.
  13. Handbook on Remote Sensing for Agricultural Statistics. Rome: GSARS Handbook, 2017. 60 p. Available at: https://www.ncfc.gov.in/publications/p3.pdf (accessed: 09.07.2021).
  14. Kravets A.G., Kolesnikov S., Salnikova N., Lempert M., Poplavskaya O. The Study of Neural Networks Effective Architectures for Patents Images Processing. In: Kravets, A., Groumpos, P., Shcherbakov, M., Kultsova, M. (eds.). Creativity in Intelligent Technologies and Data Science. CIT&DS 2019. (Communications in Computer and Information Science, vol. 1084.) Cham: Springer; 2019. pp. 27-41. DOI:10.1007/978-3-030-29750-3_3.
  15. Prishchepov A.V., Radeloff V.C., Dubinin M., Alcantara C. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment. 2012;126:195–209. DOI: 10.1016/j.rse.2012.08.017.
  16. Shcherbakov M.V., Brebels A., Shcherbakova N. L., Tyukov A. P., Janovsky T. A., Kamaev V. A. A Survey of Forecast Error Measures. World Applied Sciences Journal. 2013;24:171-176. DOI:10.5829/idosi.wasj.2013.24.itmies.80032.
  17. Sukhinov A., Isayev A., Nikitina A., Chistyakov A., Sumbaev V., Semenyakina A. Complex of Models, High-Resolution Schemes and Programs for the Predictive Modeling of Suffocation in Shallow Waters. In: Sokolinsky, L., Zymbler, M. (eds.). Parallel Computational Technologies. PCT 2017. (Communications in Computer and Information Science, vol. 753.) Cham: Springer; 2017. pp. 169–185. DOI:10.1007/978-3-319-67035-5_13.
  18. Wang X., Wang J., Che T., Huang X., Hao X., Li H. Snow Cover Mapping for Complex Mountainous Forested Environments Based on a Multi-Index Technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2018;11(5):1433–1441. DOI:10.1109/JSTARS.2018.2810094.

Key words: agricultural landscape, multispectral space image, informativity indicator of channel, spectral channel ranking, classification, geospatial recognition system, digital stratification plan.

Section: Application of GIS technologies