An approach to creating application software for modeling of the deep heat processes (on the example of modeling non-stationary thermal conductivity above a mantle plume in the VLADI GEAD 4.0 MODULE)

№1 (2021)

УДК 004.413+004.94+551.2.03::536.21
DOI: 10.47148/1609-364X-2021-1-51-73

V.I. Vasiliev, E.V. Vasilieva, N.S. Zhatnuev

AbstractAbout the AuthorsReferences
The work substantiates the necessity and considers the methodology of own (by the researcher-modeler’s own effort) development of special applied software as a tool for modeling geological processes. The concept of a mantle plume as a system of mantle-crustal migrants, sequentially rising from the core to the fragile earth’s crust through a solid plastic mantle medium by the magma- and/or fluid fracture, is presented. A tool for computer modeling of thermal disturbance above a mantle plume in the process of its vertical development with the ability to save, process and interpret the obtained numerical and graphic information is proposed. Dependences are obtained between the depths of vertical propagation of the plume, geometric and temperature intervals of relaxation of thermal disturbance in the host medium, and geodynamic parameters. A method for assessing the thermal expansion of a medium based on the values of internal iterative variables during program execution is proposed.
Vasiliev Vladimir Igorevich, PhD of geology, Science researcher, Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 6A, Sakhyanova str., Ulan-Ude, Republic of Buryatia, 670047, Russia. E-mail: geovladi@yandex.ru, geovladi@ginst.ru.

Vasilieva Eugenia Vladimirovna, PhD of geology, Science researcher, Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 6A, Sakhyanova str., Ulan-Ude, Republic of Buryatia, 670047, Russia. E-mail: geovladi@ginst.ru.

Zhatnuev Nikolay Sergeevich, Doctor of Geological and Mineralogical Sciences, Senior researcher, Geological Institute of Siberian Branch of Russian Acаdеmу of Sciences (GIN SB RAS). 6A, Sakhyanova str., Ulan-Ude, Republic of Buryatia, 670047, Russia. E-mail: zhat@ginst.ru.

  1. Arkhangelsky A.Ya. Programming in C ++ Builder. Moscow : Binom. 2000. 1152 p.
  2. Babaev V.V., Budymka V.F., Sergeeva T.A., Dombrovsky M.A. Thermophysical properties of rocks. Moscow : Nedra, 1987. 156 p.
  3. Babichev A.V., Polyansky O.P., Korobejnikov S.N., Reverdatto V.V. Mathematical modeling of magma fracture and dike formation // Reports of the Russian Academy of Sciences. 2014. V. 458. No. 6. P. 692-695.
  4. Burmin V.Yu. Distribution of density and elastic parameters in the Earth // Physics of the Earth. 2006. No. 7. P. 76-88.
  5. Vasiliev V.I. Object-oriented approach in computer modeling of geological phenomena and processes // Bulletin of IrSAU. 2013. Issue 57, Part 1. P. 79-86.
  6. Vasiliev V.I. Numerical modeling of the dynamics of heat and mass flows and mineral formation in the hydrothermal system of mid-oceanic ridges // Problems of geology of continents and oceans : Abstracts of the school-seminar of the Russian delegates of the XXXI International Geological Congress. Moscow : Scientific world. 2001. P. 51.
  7. Vasiliev V.I., Vasilieva E.V. Application of the methodology of complex computer modeling of natural objects in ecological geology // Ecological geology: theory, practice and regional problems: Materials of the IV Scientific and practical conference. Petrozavodsk, 30.09 – 02.10.2015. Voronezh : Scientific book. 2015. P. 205-208.
  8. Vasiliev V.I., Vasilieva E.V., Zhatnuev N.S., Sanzhiev G.D. Parameters of origin and evolution of the mantle-crust migrant // Geoinformatics. 2019. No. 2. P. 34-42.
  9. Vasiliev V.I., Zhatnuev N.S., Vasilieva E.V. Non-stationary thermophysical calculations in the range of plume adiabat – geotherm // Ultramafite-mafic complexes: geology, structure, ore potential. Conference materials. Irkutsk: Publishing house «Ottisk». 2019. P. 76-82.
  10. Vasiliev V.I., Zhatnuev N.S., Vasilieva E.V. Calculation of thermal disturbance of a thermogradient medium during the rise of a mantle-crustal migrant // Geoinformatics. 2019. No. 4. P. 46-53.
  11. Vasiliev V.I., Zhatnuev N.S., Rychagov S.N., Vasilieva E.V., Sanzhiev G.D. Mass transfer and mineral formation in magmatogenic-hydrothermal systems based on the results of numerical physicochemical modeling // Lithosphere. 2010. No. 3. P. 145-152.
  12. Vasiliev V.I., Chudnenko K.V., Zhatnuev N.S., Vasilieva E.V. Complex computer modeling of geological objects on the example of a subduction zone section // Geoinformatics. 2009. No. 3. P. 15-30.
  13. Gunin V.I. A new three-dimensional mathematical model of heat and mass transfer in porous media, and its capabilities // Geoecology. 2003. No. 4. P. 355-370.
  14. Dobretsov N.L. Geological consequences of the thermochemical model of plumes // Geology and Geophysics. 2008. V. 49. No. 7. P. 587-604.
  15. Zhatnuev N.S. Dynamics of deep magmas // Reports of the Russian Academy of Sciences. 2010. V. 430. No. 6. P. 787-791.
  16. Zhatnuev N.S. Trans-mantle (intra-telluric) fluids: a new model of plumes and plume magmatism // Geology and Geophysics. 2016. V. 57. No. 8. P. 1445-1454.
  17. Zhatnuev N.S. Trans-mantle fluid flows and the origin of plumes // Reports of the Russian Academy of Sciences. 2012. V. 444. No. 1. P. 50-55.
  18. Zhatnuev N.S. Fracture fluid systems in the zone of plastic deformations // Reports of the Russian Academy of Sciences. 2005. V. 404. No. 3. P. 380-384.
  19. Zhatnuev N.S., Vasiliev V.I., Sanzhiev G.D. Upward migration of fluids in the mantle. Conceptual, computational and analogue models // Domestic geology. 2013. No. 3. P. 24-30.
  20. Zakharov V.S., Smirnov V.B. Physics of the Earth. Moscow : Infra-M, 2016. 328 p.
  21. Ivanov S.N. Zones of plastic and brittle deformations in the vertical section of the lithosphere // Geotectonics. 1990. N. 2. P. 3-14.
  22. Karpov I.K. Physicochemical modeling on a computer in geochemistry. Novosibirsk : Science, 1981. 247 p.
  23. Korzhinsky D.S. Physicochemical foundations of the analysis of mineral paragenesis. Moscow : Publishing house of the USSR Academy of Sciences, 1957. 184 p.
  24. Korotkikh A.G. Thermal conductivity of materials. Tomsk : TPU Publishing House, 2011. 97 p.
  25. Kraychik A.S., Naydenysheva E.G. Application of the PRINCE2 methodology in the implementation of public and private partnership projects // SPBPU Science Week. Materials of a scientific conference with international participation. St. Petersburg : SPBPU Publishing House, 2016. P. 56-58.
  26. Kyu N.G. Creation of methods and means of fluid fracturing of rocks. Abstract dissertation. doc. tech. sciences. Novosibirsk : IGD SB RAS, 1999. 32 p.
  27. Letnikov F.A. Superdeep fluid systems of the Earth and problems of ore genesis // Geology of ore deposits. 2001. V. 43. No. 4. P. 291-307.
  28. Letnikov F.A., Dorogokupets P.I. On the question of the role of superdeep fluid systems of the earth’s core in endogenous geological processes // Reports of the Russian Academy of Sciences. 2001. V. 378. No. 4. P. 535-537.
  29. Meyer K. Physical and chemical crystallography. Moscow : Metallurgy. 1972. 480 p.
  30. Petrunin G.I., Popov V.G. Thermophysical properties of the substance of the earth (Part 1). Moscow : MSU Publishing House, 2011. 68 p.
  31. Certificate of state registration of a computer program No. 2018664295. The Russian Federation. «Vladi DiStat» – software for calculating two-dimensional distributions of physical fields and viscosity of the Earth’s crust / V.I. Vasiliev, N.S. Zhatnuev, E.V. Vasilieva ; copyright holder GIN SB RAS (RU). – No. 2018662448 ; declared 06.11.2018 ; register. 14.11.2018 ; publ. 14.11.2018, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 11.
  32. Certificate of state registration of a computer program No. 2018664801. The Russian Federation. «Vladi Collision» – lithospheric plate collision modeling program / V.I. Vasiliev ; copyright holder GIN SB RAS (RU). – No. 2018662091 ; declared 01.11.2018 ; register. 22.11.2018 ; publ. 22.11.2018, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 12.
  33. Certificate of state registration of a computer program No. 2019613716. The Russian Federation. «Vladi Joint» – a software for statistic modeling of behavior of random uprising fluid-filled fissures (cavities) systems in plastic medium / V.I. Vasiliev ; copyright holder GIN SB RAS (RU). – No. 2019612638 ; declared 14.03.2019 ; register. 21.03.2019 ; publ. 21.03.2019, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 4.
  34. Certificate of state registration of a computer program No. 2019613814. The Russian Federation. «Vladi OverPressure» – a software for parametric modeling of the formation and evolution of a mantle-crust migrant / V.I. Vasiliev, E.V. Vasilieva, N.S. Zhatnuev ; copyright holder GIN SB RAS (RU). – No. 2019612231 ; declared 06.03.2019 ; register. 22.03.2019 ; publ. 22.03.2019, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 4.
  35. Certificate of state registration of a computer program No. 2019617548. The Russian Federation. «Vladi DisTerm» – a software for two-dimensional modeling of thermal perturbation of thermogradient medium during magmatic migrant ingress / V.I. Vasiliev; copyright holder GIN SB RAS (RU). – No. 2019616467 ; declared 03.06.2019 ; register. 17.06.2019 ; publ. 17.06.2019, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 6.
  36. Certificate of state registration of a computer program No. 2019667677. The Russian Federation. «Vladi Gead» – a software for thermos-physical calculations in the range of plume adiabat – regional geotherm / V.I. Vasiliev, N.S. Zhatnuev, E.V. Vasilieva ; copyright holder GIN SB RAS (RU). – No. 2019666681 ; declared 16.12.2019 ; register. 26.12.2019 ; publ. 26.12.2019, The official bulletin «Computer programs. Database. Topologies of Integrated Circuits». No. 1.
  37. Uspenskaya I.A., Druzhinina A.I., Zhiryakova M.V., Tiflova L.A., Skvortsova E.G., Bludova N.G. Calculation of thermodynamic functions based on the results of heat capacity measurements by the method of adiabatic vacuum calorimetry. Moscow : Moscow State University, 2019. 30 p.
  38. 4CIO Tutorial. Handbook of the IT director. URL: https://book4cio.ru/ (date of access: 07.10.2020).
  39. Tsygankov D.A. The main geometric parameters of cracks formed with the use of plastic fluids // Mining information and analytical bulletin. 2015. No. 6. P. 267-271.
  40. Chudnenko K.V. Thermodynamic modeling in Geochemistry: theory, algorithms, software, applications. Novosibirsk : Academic Publishing House «GEO», 2010. 287 p.
  41. Akaogi M., Tanaka A., Ito E. Garnet-ilmenite-perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure // Phys. Earth Planet. Inter. 2002. No. 132. P. 303-324.
  42. Berman R.G. Internally-consistent thermodynamic data for minerals in the systems: Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2 // J. Petrol. 1988. No. 29. P. 445-522.
  43. Berman R.G., Aranovich L.Ya. Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2 // Contrib. Mineralogy and Petrology. 1996. V. 126. P. 1-24.
  44. Burke K., Steinberger B., Torsvik T.H., Smethurst M.A. Plume generation zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary //Earth Planet. Sci. Lett. 2008. V. 265. No. 1-2. P. 49-60.
  45. Condie K.C. Earth as an evolving planetary system. Elsevier Academic Press. 2005. 578 p.
  46. Corti G., Bonini M., Conticelli S., Innocenti F., Manetti P., Sokoutis D. Analogue modeling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma // Earth-Science Reviews. 2003. V. 63. P. 169-247.
  47. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth Planet. Inter. 1981. No. 25. P. 297-356.
  48. Helgeson H.C., Delany J.M., Nesbitt H.W., Bird D.K. Summary and critique of the thermodynamic properties of rock-forming minerals // Am. J. Sci. 1978. No. 278A. P. 1-229.
  49. Holland T.J.B., Powell R. An internally consistent thermodynamic data set for phases of petrological interest // Journal of Metamorphic Geology. 1998. V. 16. No. 3. P. 309-343.
  50. McKenzie D., Jackson J., Priestley K. Thermal structure of oceanic and continental lithosphere // Earth Planet. Sci. Lett. 2005. No. 233. P. 337-349.
  51. Voronin G.F., Kutsenok I.B. Universal method for approximating the standard thermodynamic functions of solids // J. Chem. Eng. Data. 2013. V. 58. No. 7. P. 2083-2094.

Keywords: applied programming, computer modeling, non-stationary thermal conductivity, mantle-crust migrant, adiabatic-geothermal interval, Vladi Gead 4.0.

Section: Modeling geo objects and geo-processes