South Asian megastructure according to the data of GIS-ENDDB.

№4 (2018)

Mikheeva A.V.

AbstractAbout the AuthorsReferences
The geographical information system for studying the Earth’s natural disasters (GIS-ENDDB) is focused on the research into the catastrophic events affecting the regional geodynamics of the Earth. Information base of the system contains data on geotectonics, seismic activity of the Earth, heat flows, detailed relief, and anomalies of the gravitational field as well as on the distribution of cosmogenic and volcanogenic structures. To study deep seismogenic structures the deep seismic tomography data and procedures for visualization of these data on the maps and its sections are included into GIS-ENDDB. According to the tomography data, it is revealed that the most typical structural elements at the depths of the upper mantle (reaching depths of up to 400-700 km) is the deep «canals», sometimes coinciding with the channel-like structures of seismicity – «seismic nails». The regular spatial distribution of channels along the perimeter of the W-shaped South Asian structure, other signs of the bilateral symmetry allow one to assume its single geodynamic nature.
Mikheeva Anna Vladlenovna, PhD of Physical and Mathematical Sciences, researcher of the Mathematical Geophysics Problems Laboratory of ICM&MG SB RAS. Prospect Akademika Lavrentjeva, 6, Novosibirsk, 630090, Russia. E-mail: Anna@omzg.sscc.ru.
  1. Alekseev A.S., Petrenko V.E. Examples of numerical simulation of high-speed collision of solid bodies in the hydrodynamic approximation // Report / USSR Academy of Sciences. Computing Center; Theme «Light-2», Book 5: Research reflective-radiative characteristics of space debris in various ranges. Developing formation models and the evolution of cosmic objects and synthetic particles in near-Earth space. Novosibirsk, 1992. 191 p.
  2. Vishnevsky S.A. Fluid thin-banded impact glasses in the suvits of some astroblemes (and among some tektites): accretion-mixing model of the formation of large impact events in the explosive cloud / S.А. Vishnevsky, L.N. Gilinskaya, S.M. Lebedeva, N.A. Palchik, L.N. Pospelov // Ural. mineral. coll. 2002. No 12. P. 234-310.
  3. Vladkovsky V.N. Subvertical accumulation of earthquake hypocenters – seismic «nails» // Vestnik ONZ RAS. 2012. No. 4. NZ1001.
  4. High-speed shock interaction of solid microparticles with a substrate / S.Yu. Ganigin, V.V. Kalashnikov, I.D. Ibatullin, A.Yu. Murzin, O.Yu. Glazunov, A.A. Grigoriev // General Problems of Mechanical Engineering : Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2013. V. 15, No. 4 (2). P. 339-342.
  5. Dobretsov N.L., Kidryashkin A.G., Kidryashkin A.A. Deep geodynamics. Novosibirsk Publishing House of the SB RAS. Branch «Geo», 2001. 409 p.
  6. Zeilik B.S. Shock-Explosive Tectonics and a Plate Tectonic Synopsis. AlmaAta : Gylym, 1991. 58 p.
  7. Zotkin I.T., Tsvetkov V.I. Search for meteorite craters on the Earth // Solar System Research. 1970. No. 1, Iss. 4. P. 5-65.
  8. Makarov P.V. Model of ultra-deep penetration of solid particles into metals // Physical mesomechanics. 2006. V. 9, No. 3. P. 61-70.
  9. Melosh H.J. Impact Cratering: A Geologic Process. M. : Mir, 1994. 245 p.
  10. Mikheeva A.V. The geostructural elements revealed by mathematical algorithms and digital models of the geo-information-computational system GISENDDB. Novosibirsk : IPGG, 2016. 300 p.
  11. Mikheeva A.V., Dyadkov P.G., Marchuk An.G. Geographic information system GIS-EEDB and methods of spatial-temporal analysis of seismological data // Geoinformatics. 2013. No. 2. P. 58-65.
  12. Nigmatzyanov R.S. Galactic prime cause of boundaries in the history of the earth // Domestic geology. 2015. No. 3. P. 70-83.
  13. Orlenko L.P. Physics of explosion and impact: a textbook for universities. M. : Fizmatlit, 2006. 304 p.
  14. Rusakov M.M. Experimental modeling of meteorite impact // Journal AMTP. 1966. No. 4. P. 167-169.
  15. Swift H.F. The mechanics of collisions with ultra-high speeds // The dynamics of impact. – M. : Mir, 1985. P. 173-197.
  16. Trifonov V.G. Living Tectonics of the Holocene // Bulletin of the Academy of Sciences of the USSR. 1987. No. 4. P. 99-112.
  17. Impact craters on the Moon and planets / A.T. Bazilevsky, B.A. Ivanov, K.P. Florensky [et al]. – M. : Science, 1983. 200 p.
  18. Chomskaya I.V. Interaction of accelerated by an explosion powder particles with metal barriers / I.V. Chomskaya, V.I. Zeldovich, N.Yu. Frolova, A.E. Heifetz, S.M. Usherenko // Physics of Extreme States of Matter. IPCP RAS, 2002. P.78-80.
  19. Shevchenko V.I., Arefjev S.S., Lukk A.A. Near-vertical clusters of earthquake sources not related to the tectonic structure of the Earth crust // Physics. 2011. No. 4. P. 16-38.
  20. Constraints on the tectonic setting of the Andaman ophiolites, Bay of Bengal, India, from SHRIMP U-Pb zircon geochronology of plagiogranite / D. Srinivasa Sarma [et al.] // J. Geol. 2010. V. 118, No. 6. P. 691-697.
  21. Flood deposits penecontemporaneous with ~0.8 Ma tektite fall in NE Thailand: impact-induced environmental effects? / Peter W. Haines, Kieren T. Howard, Jason R. Ali, Clive F. Burrett, Sangad Bunopas // Earth and Planet. Sci. Lett. 2004. V. 225, No. 1. P. 19-28
  22. Ford Ramsay J. An empirical model for the Australasian tektite field // Austral. J. Earth Sci. 1988.
    V. 35, No. 4. P. 483-490.
  23. Greeley R. Impact basins: Implications for formations from experiments / R. Greeley [et al.] // LPI Contributions. 1980. No. 414. P. 18.
  24. Irvine T.N. Global convection and Hawaiian upper mantle structure // Carnegie Inst. Washington Year Book, 1991. V. 90. P. 3-11.
  25. Mikheeva A.V. The new data of «Catalogue of the Earth’s impact structures» // Geochimica et Cosmochimica Acta. 2008. Suppl. 1. S19 (July 2008). 72 (12): A627-A627. DOI: 10.1016/j.gca.2008.05.016. URL: http://labmpg.sscc.ru/ (date of access: 28.06.2018).
  26. Mikheeva A.V. The Central and South-East Asian geodynamic structures manifested in the seismicity and tomography data // Bulletin of the Novosibirsk Computing Center, Series: Math. Model. in Geophys. 2017. Vol. 20. P. 4-55.
  27. Nishimura S., Harjono H., Suparka S. The Krakatau Islands: the geotectonic setting // Geo Journal. 1992. V. 28, No. 2. P. 87-98.
  28. Patriat P., Achache J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates // Nature. 1984. V. 311 (5987). P. 615-621.
  29. Remarques sur la repartition du volcanisme potassique quaternaire de Java (Indonesie) / Rubini Soeria-Atmadja [et al.] // C. R. Acad. Sci. Ser. 2. 1988. V. 2. No. 6. P. 635-641.
  30. Sandwell D.T., Smith W.H.F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate // J. Geophys. Res. 2009. V.114. P. B01411.
  31. Schaeffer A.J., Lebedev S.I. Global shear speed structure of the upper mantle and transition zone // Geophysical Journal International. 2013. V. 194. P. 417-449. DOI: 10.1093/gji/ggt095.
  32. Sunardi E., Kimura J. Temporal chemical variations in late Cenozoic volcanic rocks around the Bandung Basin, West Java, Indonesia // Ganko. 1998. V. 93, No. 4. P. 103-128.
  33. The global heat flow database of the international heat flow commission. Site Provided by the University of North Dakota, 2015. URL: www.heatflow.und.edu/index2.html (date of access: 28.06.2018).
  34. Vedder J.F., Mandeville J.-C. Microcraters formed in glass by projectiles of various densities // Journal of Geophysical Research. 1974. V. 79, No. 23. P. 3247-3256.

Section: Geoinformation systems

Keywords: morphostructural elements, geophysical anomalies, impact structures and seismological catalogs.