Koshel S.M.,Entin A.L.,Samsonov T.E.
Koshel Sergey, Candidate of Sciences in Geography, leading researcher, Faculty of Geography, Lomonosov Moscow State University. 119991, Moscow, Leninskie Gory, 1, MSU, Faculty of Geography. E-mail: skoshel@mail.ru.
Entin Andrey, engineer, Faculty of Geography, Lomonosov Moscow State University. 119991, Moscow, Leninskie Gory, 1, MSU, Faculty of Geography. E-mail: aentin@geogr.msu.ru.
Samsonov Timofey, Candidate of Sciences in Geography, leading researcher, Faculty of Geography, Lomonosov Moscow State University. 119991, Moscow, Leninskie Gory, 1, MSU, Faculty of Geography. E-mail: tsamsonov@geogr.msu.ru.
- Gruber S., Peckham S. Land-Surface Parameters and Objects in Hydrology // Geomorphometry: concepts, software, applications / T. Hengl, H.I. Reuter (Eds). Elsevier, 2009. V. 33. P. 171-194.
- Koshel S.M., Entin A.L Contemporary methods of the overland flow distribution calculation from digital elevation models // Geomorphologists. Modern methods and techniques of digital elevation modeling in Earth sciences. Moscow: Media-Press, 2016. P. 24-34.
- Jones R. Algorithms for using a DEM for mapping catchment areas of stream sediment samples // Computers and Geosciences. 2002. V. 28, Issue 9. P. 1051-1060.
- O’Callaghan J.F., Mark D.M. The extraction of drainage networks from digital elevation data // Computer vision, graphics, and image processing. 1984. V. 28, Issue 3. P. 323-344.
- Lindsay J.B. Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models // Hydrological Processes. 2016. V. 30, Issue 6. P. 846-857.
- Lindsay J.B., Creed I.F. Distinguishing actual and artefact depressions in digital elevation data // Computers and Geosciences. 2006. V. 32, Issue 8. P. 1192-1204.
- Temme A.J.A.M., Schoorl J.M., Veldkamp A. Algorithm for dealing with depressions in dynamic landscape evolution models // Computers and Geosciences. 2006. V. 32, Issue 4. P. 452-461.
- Martz L.W., Garbrecht J. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models // Hydrological Processes. 1998. V. 12, Issue 6. P. 843-855.
- Jenson S.K., Domingue J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis // Photogrammetric Engineering and Remote Sensing. 1988. V. 54, Issue 11. P. 1593-1600.
- Martz L.W., de Jong E. CATCH: A FORTRAN program for measuring catchment area from digital elevation models // Computers & Geosciences. 1988. V. 14, Issue 5. P. 627-640.
- Barnes R., Lehman C., Mulla D. An efficient assignment of drainage direction over flat surfaces in raster digital elevation models // Computers and Geosciences. 2014. V. 62. P. 128-135.
- Planchon O., Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models // CATENA. 2002. V. 46, Issue 2-3. P. 159-176.
- Wang L., Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling // International Journal of Geographical Information Science. 2006. V. 20, Issue 2. P. 193-213.
- Barnes R., Lehman C., Mulla D. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models // Computers & Geosciences. 2014. V. 62. P. 117-127.
- Barnes R. Parallel Priority-Flood depression filling for trillion cell digital elevation models on desktops or clusters // Computers & Geosciences. 2016. V. 96. P. 56-68.
- Zhou G., Liu X, Fu S., Sun Z. Parallel identification and filling of depressions in raster digital elevation models // International Journal of Geographical Information Science. 2017. V. 31, Issue 6. P. 1061-1078.
- Zhou G., Sun Z., Fu S. An efficient variant of the Priority-Flood algorithm for filling depressions in raster digital elevation models // Computers and Geosciences. 2016. V. 90. P. 87-96.
- Rieger W. A phenomenon-based approach to upslope contributing area and depressions in DEMs // Hydrological Processes. 1998. V. 12, Issue 6. P. 857-872.
- Martz L.W., Garbrecht J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM // Computers & Geosciences. 1999. V. 25, Issue 7. P. 835-844.
- Soille P., Vogt J., Colombo R. Carving and adaptive drainage enforcement of grid digital elevation models // Water Resources Research. 2003. V. 39, Issue 12. P. 1058.
- Soille P. Optimal removal of spurious pits in grid digital elevation models // Water Resources Research. 2004. V. 40, Issue 12. P. W12509.
- Lindsay J.B., Creed I.F. Removal of artifact depressions from digital elevation models: Towards a minimum impact approach // Hydrological Processes. 2005. V. 19, Issue 16. P. 3113-3126.
- Grimaldi S., Nardi F., di Benedetto F., Istanbulluoglu E., Bras R.L. A physically-based method for removing pits in digital elevation models // Advances in Water Resources. 2007. V. 30, Issue 10. P. 2151-2158.
- Santini M., Grimaldi S., Nardi F., Petroselli A., Rulli M.C. Pre-processing algorithms and landslide modelling on remotely sensed DEMs // Geomorphology. 2009. V. 113, Issue 1-2. P. 110-125.
- Hutchinson M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits // Journal of Hydrology. 1989. V. 106, Issue 3-4. P. 211-232.
- Hutchinson M., Xu T., Stein J. Recent Progress in the ANUDEM Elevation Gridding Procedure // Geomorphometry. Redlands, 2011. P. 19-22.
- Gallant J.C., Hutchinson M.F. A differential equation for specific catchment area // Water Resources Research. 2011. V. 47, Issue 5. W05535.
- Qin C.-Z., Ai B.-B., Zhu A.-X., Liu J.-Z. An efficient method for applying a differential equation to deriving the spatial distribution of specific catchment area from gridded digital elevation models // Computers & Geosciences. 2017. V. 100, № 2. P. 94-102.
- Koshel S.M., Entin A.L. Catchment area derivation from gridded digital elevation models using the flowline-tracing approach. Moscow University Bulletin. Series 5. Geography. 2017. No. 3. P. 42-50.
- Pan F., Stieglitz M., McKane R.B. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation // Water Resources Research. 2012. V. 48, Issue 2. W00L10.
- Mal’tsev K.A., Ermolaev O.P., Using DEMs for automatic plotting of catchments // Geomorpholgy. 2014. V. 1. P. 45-52.
- Gartsman B.I., Bugayets A.N., Tegay N.D., Krasnopeev S.M. Analysis of the structure of river systems and the prospects for modeling hydrological processes // Geography and natural resources. 2008. V 2. P. 116-123.
- Danielson J.J., Gesch D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011-1073. 2011. 26 p.
- Conrad O. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 // Geoscientific Model Development. 2015. V. 8, Issue 7. P. 1991-2007.
- Lindsay J.B. Whitebox GAT: A case study in geomorphometric analysis // Computers & Geosciences. 2016. V. 95. P. 75-84.
- Digital geographic basemaps – VSEGEI [Electronic resource]. URL: http://www.vsegei.com/ru/info/topo/ (date of access: 27.10.2018).
Section: Modeling geo objects and geo-processes
Keywords: digital elevation model; hydrological analysis; pre-processing; closed depressions; depression treatment; filling.