Electrical resistance and dielectric permittivity of sandstones of South Yakutia at the base of engineering structures in Neryungri (part 3)

№4 (2025)

Neradovskii L.G.

УДК 550.372+552.08
https://doi.org/10.47148/1609-364X-2025-4-54-65

AbstractAbout the AuthorsReferences
According to the data of the remote inductive sensing method obtained in 2017–2023, a correlation and regression analysis of the dependence at a frequency of 1,125 MHz of the effective values of the characteristics of the electrophysical properties of South Yakutia sandstones composing the annual heat turnover layer of the base of engineering structures in Neryungri was performed. It has been established that the growth of large values of electrical resistance of strongly slightly fractured sandstones at a distance of 40 m (depth 5–14 m) leads to a regular linear increase in lower average values of electrical resistance of seasonally frozen weathered sandstones at a distance of 5 m (depth 0–5 m). A nonlinear increase in lower average values is observed for the dielectric constant of fractured sandstones in comparison with the increase in high permeability values of weathered sandstones. This reciprocal process is mathematically described in the reverse regression order by the equations of linear and exponential functions. The application of these equations makes it possible to solve the problem of predicting the average values of electrical resistance and dielectric constant of fractured sandstones based on known a priori values of the same electrophysical characteristics of weathered sandstones. The random spread of forecast errors with a confidence probability of 70 % acceptable for methods of terrestrial geophysics is small. For electrical resistance, the error spread is ±27,6 %, and for dielectric constant — ±16,7 %. The obtained regression equations expand the technical and operational capabilities and increase the geological and economic efficiency of the remote inductive sensing method in the built-up areas of South Yakutia.

Leonid G. Neradovskii
Doctor of Technical Sciences
Senior Researcher at the Laboratory of Engineering Geocryology
Melnikov Permafrost Institute SB RAS
36, Merzlotnaya Str., Yakutsk, 677010, Russia
е-mail: leoner@mpi.ysn.ru
Scopus ID: 57201729984
SPIN-code: 3296-2473
AuthorID: 394470

1. Neradovskii L.G. Electrical resistance and dielectric permittivity of sandstones of South Yakutia at the base of engineering structures in Neryungri (part 1). Geoinformatika. 2025;(2):42–52. DOI: 10.47148/1609-364X-2025-2-42-52.
2. Neradovskii L.G. Electrical resistance and dielectric permittivity of sandstones of South Yakutia at the base of engineering structures in Neryungri (part 2). Geoinformatika. 2025;(3):60–70. DOI: 10.47148/609-364X-2025-3-60-70.
3. Zheleznyak M.N. Geotemperaturnoe pole i kriolitozona yugo-vostoka Sibirskoi platformy [Geotemperature field and permafrost in the southeastern Siberian Platform]. Novosibirsk: Nauka; 2005. 227 p.
4. Sysolyatin R.G., Zheleznyak M.N. Geocryological conditions of the Tokarikan and Guvilgra grabens (South Yakutia). Arctic and Subarctic natural resources. 2023;28(2):261–274. DOI: 10.31242/2618-9712-2023-28-2-261-274.
5. Kudryavtsev V.A. (ed.) Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenernogeologicheskie usloviya Aldanskogo gornopromyshlennogo rajona [Southern Yakutia: permafrost-hydrogeological and engineering-geological conditions of the Aldan mining region]. Moscow: MGU; 1975. 444 p.
6. Zhelinskii V.M. Mezozoiskaya uglenosnaya formatsiya Yuzhnoi Yakutii [Mesozoic coal-bearing formation of South Yakutia]. Novosibirsk: Nauka; 1980. 119 p.
7. Grib N.N., Samokhin A.V. Fiziko-mekhanicheskie svoistva uglevmeshchayushchikh porod Yuzhno-Yakutskogo basseina [Physical and mechanical properties of carbon-bearing rocks of the South Yakut basin]. Novosibirsk: Nauka; 1999. 240 p.
8. Mokshantsev K.B., Gornshtein D.K., Gusev G.S. et al. Tektonicheskoe stroenie Yakutskoi ASSR [The tectonic structure of the Yakut ASSR]. Moscow: Nauka; 1964. 240 p.
9. Shesternev D.M. Kriogipergenez i geotekhnicheskie svoistv porod kriolitozony [Cryohypergenesis and geotechnical properties of cryolithozone rocks]. Novosibirsk: SO RAN; 2001. 266 p.
10. Kompleks srednechastotnoi apparatury ehlektromagnitnogo zondirovaniya (SEHMZ). Tekhnicheskoe opisanie [The system for medium-frequency electromagnetic sounding (SEMZ). Technical specification]. Krasnoyarsk: Sibtsvetmetavtomatika; 1991. 30 p.
11. Igolkin V.I., Shaidurov G.Ya., Tronin O.A., Khokhlov M.F. Metody i apparatura ehlektrorazvedki na peremennom toke [Methods and equipment of electrical exploration on alternating current]. Krasnoyarsk: SFU; 2016. 272 p.
12. Lebedev V.F., Onushchenko V.I., Litvintseva L.M. Kompleks SEHMZ. Metodicheskoe posobie [SEMZ system. A methodological guideline]. Krasnoyarsk: Sibtsvetmetavtomatika; 1991. 83 p.
13. Titlinov V.S., Zhuravleva R.B. Tekhnologiya distantsionnykh induktivnykh zondirovanii [Technology for distance inductive soundings]. Yekaterinburg: Nauka; 1995. 56 p.
14. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and tools for integrated data analysis]. Moscow: Forum; INFRA-M; 2006. 512 p.
15. Bernoulli J. O zakone bol’shikh chisel [On the law of large numbers]. Translated from Latin by Ya. V. Uspenskii. Moscow: Nauka; 1986. 176 p.

Key words: Neryungri; weathered sandstones at a depth of 0–5 m; fractured sandstones at a depth of 5–14 m; antenna spacing of 5 and 40 m; electrical resistance; dielectric constant; regression equations and forecast errors

Section: Information systems in geology and geophysics