Semantic task engineering in geosciences: towards a new paradigm of multidisciplinary research

№3 (2025)

Dobrynin V.N., Cheremisina E.N., Kirpicheva E.Yu., Lyubimova A.V.

УДК 512.6, 517.9, 519.6, 550.372
https://doi.org/10.47148/1609-364X-2025-3-84-95

AbstractAbout the AuthorsReferences
This paper proposes a new methodology for semantic task formulation in the conditions of data flows and multidisciplinary uncertainty typical of modern geosciences. The starting point was the ideas of Yu.A. Voronin about the need to move from formal optimization to contextual design of tasks in an AI environment. The approach focuses on a semantic space in which tasks are formed dynamically based on context, goals, and data. The paradigm is focused on the integration of knowledge, meanings and actions with an emphasis on explanatory AI (XAI), which ensures transparency, interpretability and reliability of solutions, becoming the basis for cognitive and semantic engineering.

Vladimir N. Dobrynin
Candidate of Technical Sciences, Professor
Dubna State University
Institute of Systems Analysis and Management
19, Universitetskaya str. ,141980, Moscow region, Dubna, Russia
e-mail: i@vdobrynin.ru
Scopus ID: 56004991500
AuthorID: 541833

Evgenia N. Cheremisina
Doctor of Technical Sciences, Professor,
Head of the Department of Geoinformatics
All-Russian Research Geological Oil Institute
8, Varshavskoe shosse, Moscow, 117105, Russia
Academic Supervisor
Institute of Systems Analysis and Management
Dubna State University
19, Universitetskaya str., Dubna, Moscow region, 141980, Russia
e-mail: e.cheremisina@geosys.ru
ORCID ID: 0000-0002-6041-8359
Scopus ID: 56122596400
SPIN-код: 1472-2283
AuthorID: 119359

Elena Yu. Kirpircheva
Candidate of Technical Sciences, Associate Professor
Director of the Institute of Systems Analysis and Management
Dubna State University
19, Universitetskaya str., Dubna, Moscow region, 141980, Russia,
e-mail: kirphel@mail.ru
ORCID ID: 0000-0002-8009-9682
Scopus ID: 57190984831
SPIN-код: 9769-6669
AuthorID: 530722

Anna V. Lyubimova
Candidate of Technical Sciences
Head of the GIS and Digital Cartography Department
of the Geoinformatics Division
All-Russian Research Geological Oil Institute
8, Varshavskoye sh., Moscow, 117105, Russia
Head of the Department of GIS Technologies
Institute of Systems Analysis and Management
Dubna State University
19, Universitetskaya str., Dubna, Moscow region, 41980, Russia
e-mail: a.lyubimova@geosys.ru
ORCID ID: 0000-0002-8075-937X
Scopus ID: 56358577200
AuthorID: 372313

  1. Voronin Yu.A., Cheremisina E.N. O bazovykh zadachakh iskusstvennogo intellekta v mul’tidistsiplinarnykh issledovaniyakh. Ch. 1: Opisanie, sravnenie, klassifitsirovanie i raspoznanie [On the basic tasks of artificial intelligence in multidisciplinary research. Part 1: Description, comparison, classification and recognition]. Novosibirsk: IVMiMG; 2001. 234 p.
  2. Voronin Yu.A., Cheremisina E.N. O bazovykh zadachakh iskusstvennogo intellekta v mul’tidistsiplinarnykh issledovaniyakh. Ch. 2: Otsenivanie, raionirovanie, periodirovanie, predskazanie i organizatsiya [On the basic tasks of artificial intelligence in multidisciplinary research. Part 2: Evaluation, zoning, periodization, prediction and organization]. Novosibirsk: IVMiMG; 2002. 176 p.
  3. Trofimov Yu.V., Averkin A.N. The relationship between trusted artificial intelligence and XAI 2.0: theory and frameworks. Soft measurements and computing. 2025;90(5):68–84. DOI: 10.36871/26189976.2025.05.006. In Russ.
  4. Jordan M.I., Mitchell T.M. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–260. DOI: 10.1126/science.aaa8415.
  5. Timpf S. The need for task ontologies in interoperable GIS. 2002. Available at: https://consensus.app/papers/the-need-for-task-ontologies-in-interoperable-gis-timpf/f2ded491984e5f818e1c3f21e7724978 (accessed 11.08.2025). DOI: 10.3929/ETHZ-A-004370508.
  6. Yang Y., Guo C., Liu F., Liu C., Sun L., Sun Q., Chen J. Semantic Communications With AI Tasks. ArXiv. 2021:abs/2109.14170. Available at: https://consensus.app/papers/semantic-communications-with-ai-tasks-liu-yang/1adc2ac3dfb65caa8ac4e420878512d6/ (accessed 12.08.2025).
  7. Stepin V.S. Teoreticheskoe znanie [Theoretical knowledge]. Moscow : Progress-Traditsiya; 2000. 412 p.
  8. Apresyan Yu.D. Izbrannye trudy: V 2 t. T. 2. Integral’noe opisanie yazyka i sistemnaya leksikografiya [Selected works: In 2 volumes. Volume 2. Integral description of language and systemic lexicography]. Moscow : Yazyki russkoi kul’tury, 1995. 832 p.
  9. Fu Y.-M., Cheng W., Zhang W., Wang J. Digital-Analog Transmission Framework for Task-Oriented Semantic Communications. IEEE Network. 2024;38:81–88. DOI: 10.1109/mnet.2024.3435848.
  10. Guan Y., Zhang H., Zhang M. Mask Learning Enabled Multi-Task Semantic Communication with Adaptive Rate Control. In: 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops). 2024. pp. 254–259. DOI: 10.1109/ICCCWorkshops62562.2024.10693804.
  11. Zhou Y., Divekar R.R. Immersive, Task-Based Language Learning Through XR and AI: From Design Thinking to Deployment. In: TechTrends. 2025. Available at: https://consensus.app/papers/immersive-taskbased-language-learning-through-xr-and-ai-zhou-divekar/217fe499796450d6917ba087321560bf (accessed 12.08.2025). DOI: 10.1007/s11528-025-01048-2.
  12. Leont’ev A.N. Deyatel’nost’. Soznanie. Lichnost’ [Activity. Consciousness. Personality]. Moscow : Politizdat; 1975. 304 p.
  13. Lakoff G., Johnson M. Metaphors we live by. Chicago : University of Chicago Press; 1980. 276 p.
  14. Shneiderman B. Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy. International Journal of Human–Computer Interaction. 2020;36(6):495–504. DOI: 10.1080/10447318.2020.1741118.
  15. Cheremisina E.N. Kirpicheva E.Yu., Tokareva N.A., Milovidova A.A. Basic artificial intelligence tasks in сontext of geological prospecting. Geoinformatika. 2024;(4):83–92. DOI: 10.47148/1609-364X-2024-4-83-92.
  16. Rajasekar A., Moore R., Hou C.Y., Lee Ch.A., Marciano R., Torcy A., Wan M., Schroeder W., Chen Sh.-Y., Gilbert L., Tooby P., Zhu B. iRODS Primer: Integrated Rule-Oriented Data System. San Rafael: Morgan & Claypool4 2010. 160 p.
  17. Kitchin R. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society. 2014;1(1). Available at: https://journals.sagepub.com/doi/full/10.1177/2053951714528481 (accessed 12.08.2025).
  18. Sowa J.F. Knowledge Representation: Logical, Philosophical, and Computational Foundations. Pacific Grove: Brooks Cole; 2000. 594 p.
  19. Novak J.D., Cañas A.J. The Theory Underlying Concept Maps and How to Construct and Use Them: Technical Report IHMC CmapTools 2006-01 Rev 01-2008. Florida Institute for Human and Machine Cognition. 2008. 36 p. Available at: https://cmap.ihmc.us/docs/theory-of-concept-maps (accessed 12.08.2025).
  20. Gärdenfors P. Conceptual Spaces: The Geometry of Thought. Cambridge, MA: MIT Press; 2000. 368 p.
  21. Trofimov Yu.V., Averkin A.N., Cheremisina E.N. Review and analysis of XAI methods for addressing geoecological zoning and public health prevention challenges. Geoinformatika. 2024;(4):93–118. DOI: 10.47148/1609-364X-2024-4-93-118.
  22. Bommasani R., Hudson D.A., Adeli E. et al. On the Opportunities and Risks of Foundation Models. ArXiv. 2021;arXiv:2108.07258. 208 p. Available at: https://arxiv.org/abs/2108.07258 (accessed 12.08.2025). DOI: 10.48550/arXiv.2108.07258.
  23. Russell S., Norvig P. Artificial Intelligence: A Modern Approach. 4th ed. Hoboken: Pearson; 2020. 1136 p.
  24. Marjani M., Nasaruddin F., Gani A., Karim A., Targio Hashem I.A., Siddiqa A. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access. 2017;5:5247–5261. DOI: 10.1109/ACCESS.2017.2689040.
  25. Rakhilina E.V. Kognitivnaya semantika: istoriya, personalii, idei, rezul’taty [Cognitive semantics: history, persons, ideas, results]. In: Semiotika i informatika. Iss. 36. Moscow: Yazyki russkoi kul’tury; 1998. pp. 274–323.
  26. Tuia D., Roscher R., Wegner J.D., Jacobs N., Zhu X. Camps-Valls G. Towards a collective agenda on AI for Earth science data analysis. IEEE Geoscience and Remote Sensing Magazine. 2021;9(2):88–104. DOI: 10.1109/MGRS.2020.3043504.
  27. Zhang H., Xu J.-J., Cui H.-W., Yang Y., Tang C.-S., Boers N. When Geoscience Meets Foundation Models: Towards General Geoscience AI System. ArXiv. 2023;arXiv:2310.02467. Available at: https://arxiv.org/abs/2309.06799 (accessed 12.08.2025 г.). DOI: 10.48550/arXiv.2309.0679.
  28. Warglien M., Gärdenfors P., Westera M. Event Structure, Conceptual Spaces and the Semantics of Verbs. Theoretical Linguistics. 2012;38(3-4):
    159–193. DOI: 10.1515/tl-2012-0010.
  29. Barredo Arrieta A., Díaz-Rodríguez N., Del Ser J. et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 2020;58:82–115. DOI: 10.1016/j.inffus.2019.12.012.
  30. Fu Y.-M., Cheng W., Wang J., Yin L., Zhang W. Generative AI Driven Task-Oriented Adaptive Semantic Communications. 2024. Available at: https://consensus.app/papers/generative-ai-driven-taskoriented-adaptive-semantic-fu-cheng/cecff3c236a256328195a683585ee193 (accessed 12.08.2025).
  31. Explainable artificial intelligence (XAI): Defense Advanced Research Projects Agency (DARPA), Program Information. – Available at: https://www.darpa.mil/program/explainable-artificial-intelligence (accessed 17.09.2025).
  32. Trofimov Yu.V., Shevchenko A.V., Averkin A.N., Muravyov I.P., Kuznetsov E.M. Concept of Hierarchically Organized Explainable Intelligent Systems: Synthesis of Deep Neural Networks, Fuzzy Logic and Incremental Learning in Medical Diagnostics. In: Proceedings of 2025 VI International Conference on Neural Networks and Neurotechnologies (NeuroNT). Saint Petersburg, 2025. pp. 14–17. DOI: 10.1109/NeuroNT66873.2025.11049976.

Key words: semantic engineering; cognitive task formulation; geosciences; AI; LLM; multidisciplinarity; semantic models; cognitive-semantic methodology.

Section: Artifical intelligence in applied fields of knowledge