УДК 550.372+552.08
https://doi.org/10.47148/1609-364X-2025-3-60-70
AbstractAbout the AuthorReferences
Using the data of the remote inductive sensing method, a cluster analysis of the detailed variability of the electrophysical properties of the sandstones of South Yakutia, which form the foundations of engineering structures in Neryungri, was performed. It has been established that in the identified five clusters, sandstones at a depth of 0–14 m have a complex heterogeneous structure and a variable strength state. The first cluster characterizes low-strength sandstones with high background values of dielectric constant and low background values of electrical resistance. The second cluster has strong sandstones, whose electrophysical properties are opposite to the first cluster. The third and fifth clusters characterize medium-strength sandstones. In five clusters, the electrical resistance of sandstones increases at a depth of 5-14 m, and the dielectric constant decreases. The amount of clay weathering material in sandstones at a depth of 5–14 m decreases, and the massif itself is compacted and strengthened by an average of 2,08 times. This forecast estimate was obtained from the difference in the background values of the electrophysical properties of sandstones in the format of complex numbers and the results of calculations of the average strength of sandstones based on the attenuation of the harmonic field of a vertical magnetic dipole at a frequency of 1,125 MHz.
Leonid G. Neradovskii
Doctor of Technical Sciences
Senior Researcher at the Laboratory of Engineering Geocryology
Melnikov Permafrost Institute SB RAS
36, Merzlotnaya Str., Yakutsk, 677010, Russia
е-mail: leoner@mpi.ysn.ru
- Neradovskii L.G. Electrical resistance and dielectric permittivity of sandstones of South Yakutia at the base of engineering structures in Neryungri (part 1). Geoinformatika. 2025;(2):42–52. DOI: 10.47148/1609-364X-2025-2-42-52.
- Akimov A.T. Voprosy teorii i praktiki ehlektrorazvedki merzlykh porod [Questions of theory and practice of electrical exploration of frozen rocks]. In: Geofizicheskie metody issledovanii pri izyskaniyakh v stroitel’stve (Trudy PNIIIS Gosstroya RSFSR. Vol. 6). Moscow: Gosstroi SSSR; 1971. pp. 6–76.
- Kudryavtsev V.A. (ed.) Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo raiona [Southern Yakutia: permafrost-hydrogeological and engineering-geological conditions of the Aldan mining region]. Moscow: MGU; 1975. 444 p.
- Sysolyatin R.G., Zheleznyak M.N. Geocryological conditions of the Tokarikan and Guvilgra grabens (South Yakutia). Arctic and Subarctic natural resources. 2023;28(2):261–274. DOI: 10.31242/2618-9712-2023-28-2-261-274.
- Zhelinskii V.M. Mezozoiskaya uglenosnaya formatsiya Yuzhnoi Yakutii [Mesozoic coal-bearing formation of South Yakutia]. Novosibirsk: Nauka; 1980. 119 p.
- Grib N.N., Samokhin A.V. Fiziko-mekhanicheskie svoistva uglevmeshchayushchikh porod Yuzhno-Yakutskogo basseina [Physical and mechanical properties of carbon-bearing rocks of the South Yakut basin]. Novosibirsk: Nauka; 1999. 240 p.
- Mokshantsev K.B., Gornshtein D.K., Gusev G.S. et al. Tektonicheskoe stroenie Yakutskoi ASSR [The tectonic structure of the Yakut ASSR]. Moscow: Nauka; 1964. 240 p.
- Shesternev D.M. Kriogipergenez i geotekhnicheskie svoistv porod kriolitozony [Cryohypergenesis and geotechnical properties of cryolithozone rocks]. Novosibirsk: SO RAN; 2001. 266 p.
- Zheleznyak M.N. Geotemperaturnoe pole i kriolitozona yugo-vostoka Sibirskoi platformy [Geotemperature field and permafrost in the southeastern Siberian Platform]. Novosibirsk: Nauka; 2015. 227 p.
- Kompleks srednechastotnoi apparatury ehlektromagnitnogo zondirovaniya (SEHMZ). Tekhnicheskoe opisanie [The system for medium-frequency electromagnetic sounding (SEMZ). Technical specification]. Krasnoyarsk: Sibtsvetmetavtomatika SSSR; 1991. 30 p.
- Igolkin V.I., Shaidurov G.Ya., Tronin O.A., Khokhlov M.F. Metody i apparatura ehlektrorazvedki na peremennom toke [Methods and equipment of electrical exploration on alternating current]. Krasnoyarsk: SFU; 2016. 272 p.
- Lebedev V.F., Onushchenko V.I., Litvintseva L.M. Kompleks SEHMZ. Metodicheskoe posobie [SEMZ system. A methodological guideline]. Krasnoyarsk: Sibtsvetmetavtomatika SSSR; 1991. 83 p.
- Titlinov V.S., Zhuravleva R.B. Tekhnologiya distantsionnykh induktivnykh zondirovanii [Technology for distance inductive soundings]. Yekaterinburg: Nauka; 1995. 56 p.
- Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and tools for integrated data analysis]. Moscow: Forum; INFRA-M; 2006. 512 p.
- GOST 25100–2020. Grunty. Klassifikatsiya [GOST 25100–2020. Soils. Classification]. Moscow: Standartinform; 2020. 38 p.
- Neradovskii L.G. A probabilistic model for predicting sandstone strength using electromagnetic induction sounding in the Southern Yakutian permafrost region: a case study in Neryungri. Kriosfera Zemli. 2022;26(6):37–49. DOI: 10.15372/KZ20220605.
- GOST 20522–2012. Grunty. Metody statisticheskoi obrabotki rezul’tatov ispytanii [GOST 20522-2012. Soils. Methods of statistical processing of test results]. Moscow: Standartinform; 2013. 16 p.
- Kolomenskii N.V. Obshchaya metodika inzhenerno-geologicheskikh issledovanii: uchebnik dlya geologicheskikh spetsial’nostei vuzov [General methodology of engineering and geological research: textbook for geological specialties of universities]. Moscow: Nedra; 1968. 342 p.
Key words: Neryungri city; annual heat turnover layer; clusters; weathered sandstones at a depth of 0–5 m; fractured sandstones at a depth of 5–14 m; degree of weathering, compaction and hardening; electrical resistance; dielectric constant; background value.