Visual analytics tool and its setup without programming to present geospatial and other data on federal highways of the Russian Federation

№ 2 (2025)

Kukharenko E.L.

УДК 528.94:004.62/.063/.065:004.9:681.516.7+912
https://doi.org/10.47148/1609-364X-2025-2-62-72

AbstractAbout the AuthorReferences
This article discusses how to visualize geospatial data, linked data, and multimedia data without programming through author’s tool. Use it tool by a user who owns the data, but is not able to programming it from scratch, is very interesting for the market. In recent years, the author has focused on the theory and development of applications for visual analysis and display of geospatial and other linked data. The research carried out applies the author’s particular theoretical approach to visualization methods, and they are always focused on a combination of interactive visualization by a non-professional user without programming through adaptive interfaces. It is argued that the author’s ongoing research applies the author’s specific theoretical approach to methods for structuring and dividing data descriptions for efficient visualization without programming. Using this technique, the analyst gets the best of both worlds: he can use his formal logical thinking as well as his geospatial thinking to solve complex problems without programming anything.

Evgeniy L. Kukharenko
Candidate of Technical Sciences
Senior Researcher
Federal State Budget Educational Institution of Higher Education Siberian State University of Geosystems and Technologies (former Siberian State Geodetic Academy)
10, Plakhotnogo Str., Novosibirsk, 630108, Russia
e-mail: ekukharenko@mail.ru
ORCID: 0009-0007-9263-8202
AuthorID: 102167
ResearcherID: JTD-2239-2023

  1. Thomas J., Cook K., Crow V., Hetzler B., May R., McQuerry D., McVeety R., Miller N., Nakamura G., Nowell L., Whitney P., Wong P.C. Human—Computer Interaction with Global Information Spaces — Beyond Data Mining. In: Digital Media: The Future. Vince J.A., Earnshaw R. (eds). London: Springer; 2000. pp.32–46. DOI: 10.1007/978-1-4471-3646-0_3.
  2. Thomas J.J., Cook K.A. (eds.) Illuminating the Path: The Research and Development Agenda for Visual Analytics. Los Alamitos: IEEE Computer Society; 2005. 186 p.
  3. Zaichenko V.Yu. Geoinformatics as an independent science and separate scientific discipline. Geoinformatika. 2009;(3):57–61.
  4. Shokin Yu.I., Potapov V.P. GIS today: current state, perspectives, solutions. Computational Technologies. 2015;20(5):175–213.
  5. Coetzee S., Gould M., McCormack B., Mohamed-Ghouse Z.S., Scott G., Kmoch A., Alameh N., Strobl J., Wytzisk A., Devarajan Th. Towards a sustainable geospatial ecosystem beyond SDIs. Technical Report. 2021. 33 p. Available at: https://doi.org/10.13140/RG.2.2.22555.39203 (accessed 17.04.2025).
  6. Kozichev V., Sukhorutchenko V., Kargin V. The uniform information environment of the RF armed forces: definition, principles and formation aspects. Voennaya mysl`. 2022;(5):145–156.
  7. Kukharenko E.L. Visualization of geospatial data without programming: theory and implementation. Izvestia vuzov. Geodesy and aerophotosurveying. 2024;68(5):58–76. DOI: 10.30533/GiA-2024-029.
  8. Kukharenko E.L. Theoretical and methodological bases for visualizing geospatial data, linked data and multimedia data without programming. Geoinformatika. 2024;(3):4–11. DOI:10.47148/1609-364X-2024-3-4-11.
  9. Santoso M.I., Gumelar R., Irawan B. Development of the WebGIS application for transport infrastructure management in the city of Serang. IOP Conference Series: Materials Science and Engineering. 2019;673:012072. DOI: 10.1088/1757-899X/673/1/012072.
  10. Pyankova S.G., Zakolyukina E.S. Managing digital transport infrastructure of a region. The Manager. 2024:15(1):70–82. DOI: 10.29141/2218-5003-2024-15-1-5.
  11. Zupan R., Franges S., Vinkovic A., Kucic E. Visual Analytics of Forest and Other Roads Density. IOP Conference Series: Earth and Environmental Science. 2019;221:012069. DOI: 10.1088/1755-1315/221/1/012069.
  12. Adibfar A., Costin A. Next generation of transportation infrastructure management: Fusion of intelligent transportation systems (ITS) and bridge information modeling (BrIM). In: Advances in Informatics and Computing in Civil and Construction Engineering. Mutis I., Hartmann T. (eds.). Cham: Springer; 2019. pp. 43–50. DOI: 10.1007/978-3-030-00220-6_6.
  13. Ojo S. A., Olusina J.O., Ngene B.U., Busari A.A., Adediran J., Eletu A. Assessment of road infrastructure using remote sensing and GIS methodology for monitoring the condition of paved and unpaved roads. IOP Conference Series: Material Science and Engineering. 2019;640:012099.
    DOI: 10.1088/1757-899X/640/1/012099.
  14. Krüger R., Simeonov G., Beck F., Ertl T. Visual Interactive Map Matching. IEEE Transactions on Visualization and Computer Graphics. 2018;24(6):1881–1892. DOI: 10.1109/TVCG.2018.2816219.
  15. Bian W., Cui G., Wang X. A Trajectory Collaboration Based Map Matching Approach for Low-Sampling-Rate GPS Trajectories. Sensors. 2020;20(7):2057. DOI: 10.3390/s20072057.
  16. Sunkpho J., Wipulanusat W. The Role of Data Visualization and Analytics of Highway Accidents. Walailak Journal of Science and Technology. 2020;17(12):1379–1389. DOI: 10.48048/wjst.2020.10739.
  17. Lee C., Kim Y., Jin S., Kim D., Maciejewski R., Ebert D., Ko S. A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion. IEEE Transactions on Visualization and Computer Graphics. 2020;26(11):3133–3146. DOI: 10.1109/TVCG.2019.2922597.
  18. Buono P., Legretto A., Ferilli S., Angelastro S. A Visual Analytic Approach to Analyze Highway Vehicular Traffic. In: 22nd International Conference Information Visualisation (IV), IEEE. 2018. pp. 204–209. DOI: 10.1109/iV.2018.00044.
  19.  Vasilenok V.L., Martynenko O.V., Negreeva V.V., Skorobogatko K.E. Principles of management and development of transportation infrastructure in the Russian Federation. Scientific journal NRU ITMO. Series “Economics and Environmental Management”. 2023;(3):100–115. DOI:10.17586/2310-1172-2023-16-3-100-115.
  20. Bachechi C., Po L., Rollo F. Big Data Analytics and Visualization in Traffic Monitoring. Big Data Research. 2022;27:100292. DOI: 10.1016/j.bdr.2021.100292.
  21. Wang F., Chen W., Wu F., Zhao Y., Hong H., Gu T., Wang L., Liang R., Bao H. A visual reasoning approach for data-driven transport assessment on urban roads. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST). 2014. pp. 103–112. DOI: 10.1109/VAST.2014.7042486.
  22. Andrienko G., Andrienko N., Patterson F., Chen S., Weibel R., Huang H., Doulkeridis C., Georgiou H., Pelekis N., Theodoridis Y., Nanni M., Longhi L., Koumparos A., Yasar A., Kureshi I. Visual Analytics for Characterizing Mobility Aspects of Urban Context. In: Urban Informatics. Shi W., Goodchild M.F., Batty M., Kwan M.P., Zhang A. (eds). Singapore: Springer; 2021. pp. 727–755. DOI: 10.1007/978-981-15-8983-6_40.
  23. Vigneswari R., Minachi C. Study on Road Accident Data Management System. International Journal of Science, Engineering and Technology Research. 2013;2(11):2057–2062. DOI: 10.13140/RG.2.2.35245.29925.

Key words: visual analytics; data analysis; visualization method; geoinformation systems; geographic information technologies; geospatial information ecosystem; without programming

Section: Methodological and technological support for data collection and processing