Electrical resistance and dielectric permittivity of sandstones of South Yakutia at the base of engineering structures in Neryungri (part 1)

№ 2 (2025)

Neradovskii L.G.

УДК 550.372+552.08
https://doi.org/10.47148/1609-364X-2025-2-42-52

AbstractAbout the AuthorReferences
The variability in the annual heat turnover layer of the effective values of the electrophysical properties of sandstones of South Yakutia, which form the foundations of engineering structures in Neryungri, has been studied by remote inductive sensing. In the upper weathered part of the sandstones at a depth of 0–5 m, the background values of electrical resistance and dielectric constant are 856 ohms·m and 6.4 rel.units. In the lower fractured part of the sandstones, the background values at a depth of 5–14 m are less than and equal to 1538 Ohms·m and 4,8 rel.units. The spatial variability of the values of the electrophysical properties of sandstones, as well as their strength, are correctly described by Weibull’s law. The information capacity of the dielectric constant in studying the variability in depth of the degree of compaction and structural strength consolidation of sandstones is significantly lower than the electrical resistance. Their combined use increases the geological information content and gives reason to decide that in relation to weathered sandstones lying at a depth of 0–5 m, the degree of compaction and structural strength consolidation of fractured sandstones lying at a depth of 5–14 m increases by 1,3–1,8 times. Such an assessment of the degree of compaction and consolidation of sandstones, previously unknown in engineering geology and soil science, was first obtained in the annual heat turnover layer by geophysics in the built-up area of South Yakutia.

Leonid G. Neradovskii
Doctor of Technical Sciences
Senior Researcher at the Laboratory of Engineering Geocryology
Melnikov Permafrost Institute SB RAS
36, Merzlotnaya St., Yakutsk, 677010, Russia
е-mail: leoner@mpi.ysn.ru

1. Ehpov M.I., Antonov Yu.N. (eds.) Tekhnologiya issledovaniya neftegazovyh skvazhin na osnove VIKIZ. Metodicheskoe rukovodstvo. [Technology of exploration of oil and gas wells based on WIKIS. Methodological guidance.]. Novosibirsk: Izdatel’stvo SO RAN; 2000. 122 p.
2. Inozemtsev M.A. Obzor metodov izmereniya diehlektricheskoi pronitsaemosti gornykh porod [Review of methods for measuring the permittivity of rocks]. In: Ehlektronnye sredstva i sistemy upravleniya: materialy dokladov XVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii (November 18-20, 2020): in 2 pts. Part 2. Tomsk: V-Spektr; 2020. pp. 279–281.
3. Kasimova A.U., Verzunov S.N. Review and analysis of modern methods for measuring the dielectric permeability of rocks. Problemy avtomatiki i upravleniya. 2022;(1):33–49.
4. Denisov R.R., Kapustin V.V. Computerized georadar data processing. Journal of geophysics. 2010;(4):76–80.
5. Kulyandin G.A., Fedorova L.L., Omel’yanenko A.V., Olenchenko V.V. Opredelenie ehlektrofizicheskikh svoistv porod gornogo massiva metodom georadiolokatsionnogo karotazha [Determination of the electrophysical properties of rocks of a mountain range by the method of georadiolocation logging]. Mining informational and analytical bulletin (scientific and technical journal). 2011;(8):300–304.
6. Dakhnov V.N. Interpretatsiya rezul’tatov geofizicheskikh issledovanii geofizicheskikh issledovanii razrezov skvazhin [Interpretation of the results of geophysical studies of geophysical studies of well sections]. 2nd edn., revised. Moscow: Nedra; 1982. 448 p.
7. Bashkuev Yu.B., Buyanova D.G. Electrical properties of rocks of the Aldan-Stanovy upland according to the data of ultra-long-wave radio impedance sounding from an airplane. Gornyj informacionno-analiticheskij byulleten’ (nauchno-tekhnicheskij zhurnal). 2011; (1): 190–196.
8. Kudryavtsev V.A. (ed.) Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo raiona [Southern Yakutia: permafrost-hydrogeological and engineering-geological conditions of the Aldan mining region]. Moscow: MGU; 1975. 444 p.
9. Sysolyatin R.G., Zheleznyak M.N. Geocryological conditions of the Tokarikan and Guvilgrinsky grabens (South Yakutia). Arctic and subarctic natural resources. 2023;28(2):261–274. DOI: 10.31242/2618-9712-2023-28-2-261-274.
10. Zhelinskii V.M., Korobitsyna V.N., Karimova S.S. Mezozoiskie otlozheniya i geneticheskie tipy ugol’nykh plastov Yuzhnoi Yakutii [Mesozoic deposits and genetic types of coal seams in Southern Yakutia]. Novosibirsk: Nauka; 1976. 126 p.
11. Zhelinskii V.M. Mezozoiskaya uglenosnaya formatsiya Yuzhnoi Yakutii [Mesozoic coal-bearing formation of South Yakutia]. Novosibirsk: Nauka; 1980. 119 p.
12. Grib N.N., Samokhin A.V. Fiziko-mekhanicheskie svoistva uglevmeshchayushchikh porod Yuzhno-Yakutskogo basseina [Physical and mechanical properties of carbon-bearing rocks of the South Yakut basin]. Novosibirsk: Nauka; 1999. 240 p.
13. Buldovich S.N., Melent’ev V.S., Naumov M.S., Furikevich O.S. Rol’ noveishikh razryvnykh narushenii v formirovanii merzlotno-gidrogeologicheskikh uslovii (na primere Neryungrinskoi sinklinali Yuzhno-Yakutskogo mezozoiskogo progiba) [The role of recent faults in the formation of permafrost and hydrogeological conditions (case study of the Neryungri syncline, South-Yakutian Mesozoic trough)]. In: Merzlotnye Issledovania. Iss 15. Moscow: MGU; 1976. pp. 120–125.
14. Mokshantsev K.B., Gornshtein D.K., Gusev G.S. et al. Tektonicheskoe stroenie Yakutskoi ASSR [The tectonic structure of the Yakut ASSR]. Moscow: Nauka; 1964. 291 p.
15. Shesternev D.M. Kriogipergenez i geotekhnicheskie svoistv porod kriolitozony [Cryohypergenesis and geotechnical properties of cryolithozone rocks]. Novosibirsk: SO RAN; 2001. 266 p.
16. Zheleznyak M.N. Geotemperaturnoe pole i kriolitozona yugo-vostoka Sibirskoi platformy [Geotemperature field and permafrost in the southeastern Siberian Platform]. Novosibirsk: Nauka; 2015. 227 p.
17. Kompleks srednechastotnoi apparatury ehlektromagnitnogo zondirovaniya (SEHMZ). Tekhnicheskoe opisanie [The system for medium-frequency electromagnetic sounding (SEMZ). Technical specification]. Krasnoyarsk: Sibtsvetmetavtomatika SSSR; 1991. 30 p.
18. Igolkin V.I., Shaidurov G.YA., Tronin O.A., Khokhlov M.F. Metody i apparatura ehlektrorazvedki na peremennom toke [Methods and equipment of electrical exploration on alternating current]. Krasnoyarsk: SFU; 2016. 272 p.
19. Lebedev V.F., Onushchenko V.I., Litvintseva L.M. Kompleks SEhMZ. Metodicheskoe posobie [SEMZ system. A methodological guideline]. Krasnoyarsk: Sibtsvetmetavtomatika SSSR; 1991. 83 p.
20. Titlinov V.S., Zhuravleva R.B. Tekhnologiya distantsionnykh induktivnykh zondirovanii [Technology for distance inductive soundings]. Yekaterinburg: Nauka; 1995. 56 p.
21. Neradovskii L.G. A Probabilistic model for predicting sandstone strength using electromagnetic induction sounding in the Southern Yakutian permafrost region: a case study in Neryungri. Kriosfera Zemli. 2022;26(6):37–49. DOI: 10.15372/KZ20220605.
22. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and tools for integrated data analysis]. Moscow: Forum: INFRA-M; 2006. 512 p.
23. Neradovskii L.G. Dynamics of the physical properties of sandstone within the depth of annual ground temperature variation, Southern Yakutia (Neryungri case study). Geoinformatika. 2024;(2):36-44. DOI: 10.47148/1609-364X-2024-2-36-44.
24. Yarg L.A. Metody inzhenerno-geologicheskikh issledovanii protsessa i kor vyvetrivaniya [Methods of engineering and geological studies of the process and crust of weathering]. Moscow: Nedra; 1991. 139 p.
25. Mamyashev V.G., Kuznetsova A.M. Laws of compaction of sandy-clay rocks in the sedimentary cover of the West Siberian oil and gas-bearing mega-basin. Journal of geophysics. 2023;(4):34-40. DOI: 10.34926/geo.2023.83.38.006.
26. Neradovskii L.G. Geological and geophysical assessments of the strength of sandstones of South Yakutia at the foundation of engineering structures of the city of Neryungri. Journal of geophysics. 2024;(4):70–77. DOI 10.34926/geo.2024.32.50.010.
27. Neradovskii L.G. Verification of the accuracy of the model for predicting strength of sedimentary rocks of Southern Yakutia based on geometric electromagnetic induction sounding. Kriosfera Zemli. 2024;28(4):16–26. DOI: 10.15372/KZ20240402.

Key words: Neryungri city; annual heat turnover layer; sandstones; degree of compaction and structural strength consolidation; effective values of electrical resistance and dielectric constant; remote inductive sensing method; depth 0–5 and 5–14 m

Section: Information systems in geology and geophysics