Episodes of high correlation of the annual numbers of earthquakes and the slops of the earthquake recurrence graphs of the Baikal Region

№1 (2025)

Kakourova A.A., Dem’yanovich V.M., Klyuchevskaya A.A., Dzhurik V.I., Bryzhak E.V.

УДК 550.34.042(4+43)
https://doi.org/10.47148/1609-364X-2025-1-22-34

AbstractAbout the AuthorsReferences
Currently, the topical issues are the study of geological and geophysical processes occurring in the Earth’s lithosphere and the forecast of strong earthquakes. To be able to solve these problems, it is necessary to monitor and study the patterns of the seismic process. In this paper, using a statistical approach, we study the correlations of annual numbers and slopes of the recurrence graphs of representative earthquakes in the Baikal region and various hierarchical levels of the Baikal Rift System (BRS) – three districts and six sections – that occurred in 1968-2014. The study was carried out for implementation lengths of three, five and ten years with a step of one year. Episodes of high correlation of these parameters in the Baikal region and BRS areas, as well as the Baikal region and BRS sections, were revealed, representing episodes of synchronization of the seismic process in these territories. In the late 1970s – early 1980s. High correlations of both parameters are observed simultaneously and coincide in time with the activation of rifting attractor structures (RAS) in the BRS. RAS activation may also be the reason for high correlations of parameters in the late 1990s – early 2000s and, possibly, in the late 2000s. We believe that RAS activations may contribute to synchronization of seismic regime parameters of the BRS territories at different hierarchical levels. The obtained results may also indicate the passage of deformation waves generated in the RAS areas or fault zones. Further study of synchronizations of the seismic process in the Baikal region will contribute to solving the problem of searching for evidence of the existence of deformation waves in the lithosphere of the region.

Anna A. Kakourova
Candidate of Geological and Mineralogical Sciences,
Junior Researcher
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
128, Lermontova str., Irkutsk, 664033, Russia
e-mail: anna2015@crust.irk.ru
ORCID: 0000-0003-0385-3458
SPIN-код: 3372-7797
AuthorID: 1081900

Vladimir M. Dem’yanovich
Lead Engineer
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
128, Lermontova str., Irkutsk, 664033, Russia
e-mail: vmdem@crust.irk.ru
AuthorID: 64968

Anna A. Kluchevskaya
Candidate of Biological Sciences,
Lead Engineer
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
128, Lermontova str., Irkutsk, 664033, Russia
e-mail: annakl@crust.irk.ru
AuthorID: 97600

Vasilii I. Dzhurik
Doctor of Geological and Mineralogical Sciences,
Chief Researcher
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
128, Lermontova str., Irkutsk, 664033, Russia
e-mail: dzhurik@crust.irk.ru
ORCID: 0000-0002-8082-5461
SCOPUS ID: 6602593180
Researcher ID: P-6614-2015
AuthorID: 982

Evgenii V. Bryzhak
Candidate of Geological and Mineralogical Sciences,
Head of the Laboratory of Engineering Seismology
and Seismogeology, Senior Researcher
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
128, Lermontova str., Irkutsk, 664033, Russia
e-mail: bryzhak@crust.irk.ru
ORCID: 0000-0001-7550-4447
SPIN-код: 3053-8213
AuthorID: 711335

  1. Dey B., Dikshit P., Sehpal S., Trehan V., Sehgal V.K. Intelligent solution for earthquake data analysis and prediction for future smart cities. Computers and industrial engineering. 2022;170:108368. DOI: 10.1016/j.cie.2022.108368.
  2. Keilis-Borok V. I., Knopoff L., Rotwain I.M., Allen C.R. Intermediate term prediction of occurrence times of strong earthquakes. Nature. 1988;335:P. 690–694.
  3. Sobolev G.A. Stadii podgotovki sil’nykh Kamchatskikh zemletryasenii [Stages of preparation of strong Kamchatka earthquakes]. Vulkanologiya i sejsmologiya. 1999;(4-5):63–72.
  4. Wiemer S., Wyss M. Seismic quiescence before the Landers (M = 7.5) and Big Bear (M = 6.5) 1992 earthquakes. Bulletin of the Seismological Society of America. 1994;84(3):900–916. DOI: 10.1785/BSSA0840030900.
  5. Amorèse D., Grasso J.-R., Rydelek P.A. On varying b-values with depth: results from computer-intensive tests for Southern California. Geophysical Journal International. 2010;180(1):347–360. DOI:10.1111/j.1365-246X.2009.04414.x.
  6. Lukk A.A., Popandopoulos G.A. Reliability of determining the parameters of Gutenberg-Richter distribution for weak earthquakes in Garm, Tajikistan. Izvestiya, Physics of the Solid Earth. 2012;48(9-10):698–720. DOI: 10.1134/S1069351312090017.
  7. Liu J., Rodina S.N., Rogozhin E.A. Paleoearthquakes and long-term seismic regime in the Longmenshan fault zone, southwest China. Izvestiya, Physics of the Solid Earth. 2017;53(6):840–844. DOI: 10.1134/S1069351317060039.
  8. Radziminovich N.A., Miroshnichenko A.I., Zuev F.L. Magnitude of completeness, b-value, and spatial correlation dimension of earthquakes in the South Baikal Basin, Baikal Rift System. Tectonophysics. 2019;759:44–57. DOI: 10.1016/j.tecto.2019.04.002.
  9. Oynakov E.I., Botev E.A. Spatial and time variation of seismicity before strong earthquakes in the southern part of the Balkans. Annals of Geophysics. 2021;64(4):SE433. DOI:10.4401/ag-8566/.
  10. Ogata Y., Imoto M., Katsura K. 3-D spatial variation of b-values of magnitude frequency distribution beneath the Kanto district, Japan. Geophysical Journal International. 1991;104(1):135–146. DOI: 10.1111/j.1365-246X.1991.tb02499.x.
  11. Marzocchi W., Sandri L. A review and new insights on the estimation of the b-value and its uncertainty. Annals of Geophysics. 2003;46(56):1271–1282.
  12. Sobolev G.A., Ponomarev A.V. Fizika zemletryasenii i predvestniki [Physics of Earthquakes and Precursors]. Moscow: Nauka; 2003. 270 p.
  13. Klyuchevskii A.V. Episodes of high correlation between annual rates of earthquakes the Baikal rift zone. Journal of Volcanology and Seismology. 2011;5(1):53–59. DOI: 10.1134/S0742046311010039.
  14. Prozorov A.G. Algoritm prognoza zemletryasenii dlya regiona Pamira i Tyan’_Shanya po kombinatsii udalennykh aftershokov i zatishii [Algorithm for earthquake prediction for the Pamir and Tien Shan region based on a combination of remote aftershocks and lulls]. In: Komp’yuternyi analiz geofizicheskikh polei. Moscow: Nauka; 1990. pp. 75–84.
  15. Kopnichev Yu.F., Bastukas I., Sokolova I.N. Pary sil’nykh zemletryasenii i geodinamicheskie protsessy v raione Tsentral’noi i Yuzhnoi Azii [Pairs of strong earthquakes and geodynamic processes in the region of Central and South Asia]. Vulkanologiya i sejsmologiya. 2002;(5):49–58.
  16. Klyuchevskii A.V. Sovremennaya dinamika Baikal’skogo rifta i osobennosti prostranstvenno-vremennogo raspredeleniya sil’nykh zemletryasenii [The present-day dynamics of the Baikal rift and the statio-temporal distribution of large earthquakes]. Vulkanologiya i sejsmologiya. 2003;(5):65–78.
  17. Sadovskii M.A. Estestvennaya kuskovatost’ gornoi porody [Natural lumpiness of rock]. Transactions (Doklady) of the USSR Academy of Sciences. 1979;247(4):829–831.
  18. Golenetskii S.I., Dem’yanovich V.M., Filina A.G. Predstavitel’nost’ zemletryasenii Yuzhnoi Sibiri i Mongolii v 1980–1990 gg. [Representativeness of earthquakes in Southern Siberia and Mongolia in the 1980s–1990s]. In: Seismichnost’ i seismicheskoe raionirovanie Severnoi Evrazii. Iss. 1. Moscow: IFZ RAN; 1993. pp. 83–85.
  19. Baikal’skii filial FGBU FITS «Edinaya geofizicheskaya sluzhba Rossiiskoi akademii nauk» [Baikal Branch of the Federal Research Center “Unified Geophysical Service of the Russian Academy of Sciences”]. Available at: http://www.seis-bykl.ru (accessed 03.13.2022).
  20. Altae-Sayanskii filial FGBU FITS «Edinaya geofizicheskaya sluzhba Rossiiskoi akademii nauk» [Altai-Sayan Branch of the Federal Research Center “Unified Geophysical Service of the Russian Academy of Sciences”]. Available at: http://www.asgsr.ru (accessed 03.13.2022).
  21. Klyuchevskii A.V. Spatiotemporal variations in seismic moments of earthquakes foci in the Baikal region. Doklady Earth Sciences. 2000;373A:1040–1042.
  22. Rautian T.G. Ob opredelenii ehnergii zemletryasenii na rasstoyaniyakh do 3000 km [On the determination of earthquake energy at distances up to 3000 km]. Ehksperimental’naya seismika. Trudy Instituta fiziki Zemli AN SSSR. 1964;(32):86–93.
  23. Klyuchevskii A.V., Bayar G., Bum-Ochir S. Synchronization episodes in annual numbers of earthquakes in the Mongolian-Baikal region. Doklady Earth Sciences. 2010;431(1):339–344. DOI: 10.1134/S1028334X10030165.
  24. Klyuchevskii A.V. Rifting Attractor Structures in the Baikal Rift System: Location and Effects. Journal of Asian Earth Sciences. 2014;88:246–256. DOI: 10.1016/j.jseaes.2014.03.009.
  25. Letnikov F.A., Klyuchevskii A.V. Riftogenesis attractor structures in the lithosphere of the Baikal rift system: nature and formation mechanism. Doklady Earth Sciences. 2014;458(1):1043–1046. DOI: 10.1134/S1028334X14090086.
  26. Grebenshchikova V.I., Kuzmin M.I., Klyuchevskii A.V., Demyanovich V.M., Kluchevskaya A.A. Elevated mercury in the water of the Angara river source: a response to geodynamic impacts and strong earthquakes. Doklady Earth Sciences. 2020;491(2):253-256. DOI: 0.1134/S1028334X20040078.
  27. Klyuchevskii A.V., Grebenshchikova V.I., Kuz’min M.I., Dem’yanovich V.M., Klyuchevskaya A.A. The relationship between powerful geodynamic impacts and an increase in the mercury content of the water of the Angara river source (Baikal rift zone). Russian Geology and Geophysics. 2021;62(2):293–311. DOI: 10.15372/GiG2020150.
  28. Bykov V.G. Strain waves in the Earth: theory, field data, and models. Russian Geology and Geophysics. 2005;46(11):11176–1190.

Key words: Baikal rift system; earthquakes; slope of earthquake recurrence graph; seismicity, seismic process; number of earthquakes.

Section: Modeling geo objects and geo-processes