Dynamics analysis of some environmental variables in natural and technogenic geosystems of the steppe Urals based on satellite data

№4 (2024)

Mychina K.V., Shchavelev A.N., Ryakhov R.V.

УДК 528.854.2
https://doi.org/10.47148/1609-364X-2024-4-39-47

AbstractAbout the AuthorsReferences
Analysis of the dynamics of the main greenhouse gases content in the atmosphere and related climate variables in certain territories is one of the approaches to solving modern environmental and climatic problems. The purpose of the paper is to study the dynamics of some environment-forming variables in the natural-technogenic geosystem of an oil and gas field in the Ural part of the Volga-Ural steppe region. In the study area, zone 1 with a natural-technogenic geosystem and zone 2 with the original landscape are identified. The change in the content of two main greenhouse gases — carbon dioxide and methane — in the atmosphere of zones 1 and 2, fluctuations in temperature and albedo of the landscape surface, and moisture content in vegetation were analyzed. Satellite images and freely available products were used as source materials: OCO-2 (2015-2021), Sentinel-5P (2018-2024), Landsat-8 (2013-2022). A slight increase in the average concentration of carbon dioxide in the atmosphere of zone 1 compared to zone 2, a lower content of methane in the atmosphere of zone 1 compared to zone 2, a stable increase in the concentration of both greenhouse gases over the study area, as well as changes in temperature, humidity and radiation balances in technogenic transformed landscapes of zone 1 (an increase in surface temperature with a decrease in moisture content in the vegetation cover and the reflectivity of landscapes) were discovered. Thus, recent satellite images make it possible to reveal the dynamics of a number of environmental variables, including greenhouse gases, in areas of research interest.

Ksenia V. Myachina
Doctor of Geographical Sciences, Leading Researcher
Head of the Department of natural and technogenic geosystems
Steppe Institute of the Ural Branch of the RAS
11, Pionerskaya str., Orenburg, 460000, Russia
e-mail: mavicsen@list.ru
ORCID: 0000-0001-5190-1421
Scopus Author ID: 57217686210
ResearcherID: К-5099-2018
SPIN-код: 4734-1819
AuthorID: 155565

Anton N. Shchavelev
Junior Researcher
Steppe Institute of the Ural Branch of the RAS
11, Pionerskaya str., Orenburg, 460000, Russia
e-mail: ditmark12rus@gmail.com
ORCID: 0000-0002-7249-2193
SPIN-код: 9772-5310
AuthorID: 1144156

Roman V. Ryakhov
Researcher
Steppe Institute of the Ural Branch of the RAS
11, Pionerskaya str., Orenburg, 460000, Russia
e-mail: remus.rv@gmail.com
ORCID: 0000-0002-4762-3286
Scopus Author ID: 57223622892
ResearcherID: J-8188-2018
SPIN-код: 4622-0083
AuthorID: 835030

  1. Gleckler P.J., Durack P.J., Stouffer R.J., Johnson G.C., Forest C.E. Industrial-era global ocean heat uptake doubles in recent decades. Nature Climate Change. 2016;6(4):394–398. DOI: 10.1038/nclimate2915.
  2. Guo D., Wang J., Fu H., Wen H., Luo Y. Cropland has higher soil carbon residence time than grassland in the subsurface layer on the Loess Plateau, China. Soil and Tillage Research. 2017;174:130–138. DOI: 10.1016/j.still.2017.07.003.
  3. Lewis S.L., Maslin M.A. Defining the Anthropocene. Nature. 2015;519:171–180. DOI: 10.1038/nature14258.
  4. Romanovskaya A.A. Approaches to implementing ecosystem climate projects in Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):463–478. DOI: 10.31857/S2587556623040118.
  5. Kurichev N.K., Ptichnikov A.V., Shvarts E.A., Krenke A.N. Nature-based offsets in Russia: key challenges and conditions for success. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):619–636. DOI: 10.31857/S2587556623040040.
  6. Nayak N., Mehrotra R., Mehrotra S. Carbon biosequestration strategies: a review. Carbon Capture Science & Technology. 2022;4:100065. DOI: 10.1016/j.ccst.2022.100065.
  7. Makhnykina A.V., Prokushkin A.S., Verkhovets S.V., Tychkov I.I., Rubtsov A.V., Koshurnikova N.N., Vaganov E.A., Menyailo O.V., Urban A.V. The impact of climatic factors on CО2 emissions from soils of middle-taiga forests in Central Siberia: emission as a function of soil temperature and moisture. Russian Journal of Ecology. 2020;51(1):46–56. DOI: 10.1134/S1067413620010063.
  8. Menyailo O.V., Huwe B. Denitrification and C, N mineralization as function of temperature and moisture potential in organic and mineral horizons of an acid spruce forest soil. Journal of Plant Nutrition and Soil Science. 1999;162(5):527–531. DOI: 10.1002/(SICI)1522-2624(199910)162:5%3C527::AID-JPLN527%3E3.0.CO;2-%23.
  9. Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, Series B. 1992;44(2):81–99. DOI: 10.1034/j.1600-0889.1992.t01-1-00001.x.
  10. Danilov-Danil’yan V.I. Ecological challenge and sustainable development. Moscow: Progress-Traditsiya, 2000. 414 p.
  11. Kiselev A.A., Karol’ I.L. S metanom po zhizni [With methane through life]. St Petersburg: GGO; 2019. 72 p.
  12. Fedorov Yu.A., Sukhorukov V.V., Trubnik R.G. Review: emission and absorption of greenhouse gases by soils. Ecological problems. Anthropogenic transformation of nature. 2021;7(1):6–34. DOI: 10.17072/2410-8553-2021-1-6-34.
  13. Glagolev M.V., Shnyrev N.A. Dynamics of CH4 emission an natural wetlands in summer- autumn period (on example of south Tomsk area). Vestnik Moskovskogo Universiteta. Seriya 17: Pochvovedenie. 2007;(1):8–14. DOI: 10.3103/S0147687407010024.
  14. Myachina K.V. Geoehkologicheskie aspekty optimizatsii stepnykh landshaftov v usloviyakh razrabotki neftegazovykh mestorozhdenii [Geoecological aspects of optimizing steppe landscapes in the context of oil and gas field development]. Moscow: Media-Press; 2020. 215 p.
  15. Metz E.M., Vardag S.N., Basu S. et al. Soil respiration–driven CO2 pulses dominate Australia’s flux variability. Science. 2023;379(6639):1332–1335. DOI: 10.1126/science.add7833.
  16. Chan K.L, Xu J., Slijkhuis S., Valks P., Loyola D.G. TROPOspheric Monitoring Instrument observations of total column water vapour: algorithm and validation. Science of the Total Environment. 2022;821:153232. DOI: 10.1016/j.scitotenv.2022.153232.
  17. Hosseini Chamani F., Farrokhian Firouzi A., Amerykhah H. Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices. Journal of Water and Soil Conservation. 2019;26(4):239-254. DOI: 10.22069/JWSC.2019.15306.3053.
  18.  Hardisky M.A., Klemas V., Smart R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing. 1983;49(1):77–83.
  19. Tang J., Luyssaert S., Richardson A.D., Kutsch W., Janssens I.A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proceedings of the National Academy of Sciences. 2014;111(24):8856–8860. DOI: 10.1073/pnas. 132076111.

Key words: environment-forming parameters; carbon dioxide; methane, dynamics; Volga-Ural steppe region; natural-technogenic geosystem; satellite data

Section: Geoecology