System for forecasting the lake dynamics in Russian Arctic using satellite images based on NextGIS Web

№4 (2024)

Polishchuk Yu.M., Sokol E.S., Togachev A.A., Polishchuk V.Yu., Kupriyanov M.A., Melnikov A.V.

УДК 551.34:551.58
https://doi.org/10.47148/1609-364X-2024-4-29-38

AbstractAbout the AuthorsReferences
The article discusses the important geoecological problem of predicting the dynamics of thermokarst lakes in the Russian Arctic as intensive sources of natural greenhouse gas emissions, which is considered as one of the factors of current climate change. The purpose of the work is to consider the development of a system for forecasting the dynamics of lake areas using entropy-randomized machine learning algorithms and tools of the NextGIS Web geographic information system. The procedure for processing information to predict the dynamics of lakes is considered. Data from remote measurements of the areas of thermokarst lakes in the Arctic zone of Russia, obtained from Landsat satellite images over the past several decades, and climate data determined by reanalysis of meteorological data for the same period are used as retrospective information for forecasting. The system is implemented on the basis of the NextGIS Web geographic information system, which allows the inclusion of randomized modeling applications using the Python language.

Yury M. Polishchuk
Doctor of Physico-Mathematical Sciences, Professor
Chef Researcher
Ugra Research Institute of Information Technologies
151, Mira str., Khanty-Mansiysk, 628011, Russia
e-mail: yupolishchuk@gmail.com
ORCID: 0000-0002-4944-4919
Scopus Author ID: 6701744203
ResearcherID: D-5649-2014
SPIN-код: 5753-1636
AuthorID: 61393

Eugeniy S. Sokol
Leading Specialist
Ugra Research Institute of Information Technologies
151, Mira str., Khanty-Mansiysk, 628011, Russia
e-mail: eugen137@gmai.com
ORCID: 0009-0009-8308-154X
Scopus Author ID: 57221465588
SPIN-код: 3718-899
AuthorID: 1083410

Aleksandr A. Togachev
Leading Specialist
Ugra Research Institute of Information Technologies
151, Mira str., Khanty-Mansiysk, 628011, Russia
e-mail: togachevaa@uriit.ru
ORCID: 0009-0009-3670-1275

Vladimir Y. Polishchuk
Сandidate of Technical Sciences, Researcher
Institute of Monitoring of Climatic and Ecological Systems
Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS)
10/3, Akademichesky ave, Tomsk, 634055, Russia
e-mail: liquid_metal@mail.ru
ORCID: 0000-0002-2058-1725
Scopus Author ID: 56985630500
SPIN-код: 5501-2030
AuthorID: 674827

Matvey A. Kupriyanov
Leading Specialist
Ugra Research Institute of Information Technologies
151, Mira str., Khanty-Mansiysk, 628011, Russia
e-mail: kupriyanovma@uriit.ru
ORCID: 0000-0002-9476-2887
Scopus Author ID: 57197843804
ResearcherID: AAB-8176-2019
SPIN-код: 4352-8178
AuthorID: 818841

Andrey V. Melnikov
Doctor of Technical Sciences, Professor
Head of Institute
Ugra Research Institute of Information Technologies
151, Mira str., Khanty-Mansiysk, 628011, Russia
e-mail: MelnikovAV@uriit.ru
ORCID: 0000-0002-1073-7108
ResearcherID: N-8822-2013
Scopus Author ID: 57209782911
SPIN-код: 8813-6794
AuthorID: 179248

  1. Zabelina S.A., Shirokova L.S., Klimov S.I., Chupakov A.V., Lim A.G., Polishchuk Yu.M., Polishchuk V.Yu., Bogdanov A.N., Muratov I.N., Guerin F., Karlsson J., Pokrovsky O.S. Carbon Emission from Thermokarst Lakes in NE European Tundra. Limnology and Oceanography. 2021;66(S1):S216–S230. DOI: 10.1002/Ino.11560.
  2. Anthony K.W., Schneider von Deimling T., Nitze I., Frolking S., Emond A., Daanen R., Anthony P., Lindgren P., Jones B., Grosse G. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications. 2018;9:3262. DOI: 10.1038/s41467-018-05738-9.
  3. Golubyatnikov L.L., Mammarella I. Methane fluxes into atmosphere from Fennoskandian lakes. Izvestiya. Atmospheric and Oceanic Physics. 2018;54(6):570–580. DOI: 10.1134/S0001433818060075.
  4. Рolishchuk Y.M., Bogdanov A.N., Muratov I.N., Polishchuk V.Y., Lim A., Manasypov R.M., Shirokova L.S., Pokrovsky O.S. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian lowland. Environmental Research Letters. 2018;13(4):045002. DOI: 10.1088/1748-9326/aab046.
  5. Polishchuk V.Yu., Kupriyanov M.A., Polishchuk Yu.M. Analysis of interrelation of climatic change and dynamics of thermokarst lakes in the Arctic zone of Taymyr. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021;18(5):193–200. DOI: 10.21046/2070-7401-2021-18-5-193-200.
  6. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. Consistent patterns of the size distribution of thermokarst lakes. Doklady Earth Sciences. 2017;474(2):692-694. DOI: 10.1134/S1028334X17060162.
  7. Webb E.E., Liljedahl A.K. Diminishing lake area across the northern permafrost zone. Nature Geoscience. 2023;16:202-209. DOI: 10.1038/s41561-023-01128-z.
  8. Kravtsova V.I., Bystrova A.G. Changes in thermokarst lake size in different regions of Russia for the last 30 years. Kriosfera Zemli. 2009;13(2):16–26.
  9. Polishchuk V.Yu., Polishchuk Yu.M. Modeling of thermokarst lake dynamics in West-Siberian permafrost. In: Permafrost: Distribution, Composition and Impacts on Infrastructure and Ecosystems. O. Pokrovsky, ed. New York: Nova Science Publishers; 2014. pp. 205–234. DOI: 10. 978-94-007-4569-8.
  10. Popkov Yu.S., Popkov A.Yu., Dubnov Yu.A. Randomizirovannoe mashinnoe obuchenie pri ogranichennykh ob”emakh dannykh [Randomized machine learning with limited data]. Moscow: URSS; LENAND; 2019. 310 p.
  11. Popkov Yu.S., Popkov A.Yu. New Methods of entropy-robust estimation for ramdomized models under limited data. Enthropy. 2014;16(2):675–698. DOI: 10.3390/e16020675.
  12. Dubnov Yu.A., Popkov A.Yu., Polishchuk V.Yu., Sokol E.S., Mel’nikov A.V., Polishchuk Yu.M., Popkov Yu.S. Algoritmy randomizirovannogo mashinnogo obucheniya dlya prognozirovaniya ehvolyutsii ploshchadi termokarstovykh ozer v zonakh vechnoi merzloty [Randomized machine learning algorithms to forecast the evolution of thermokarst lakes area in permafrost zones]. Avtomatika i telemehanika. 2023;(1):98–120.
  13. Polishchuk Yu.M., Silich V.A., Tatarnikov V.A., Khodashinskii I.A., Tsipileva T.A. Regional’nye ehkologicheskie informatsionno-modeli-ruyushchie sistemy [Regional environmental information modeling systems]. Novosibirsk: Nauka, 1993. 129 p.
  14. Buck S.F. A method of Estimation of Missing Values in Multivariate Data suitable for use with an Electronic Computer. Journal of the Royal Statistical Society. Series B (Methodological). 1960;22(2):302–306. DOI: 10.1111/j.2517-6161.1960.tb00375.x.
  15. Dubnov Yu.A., Polishchuk V.Yu., Popkov Yu.S., Polishchuk Yu.M., Mel’nikov A.V., Sokol E.S. Entropy-randomized method for the reconstruction of missing data. Automation and Remote Control. 2021;82(4):670–686. DOI: 10.1134/S0005117921040056.
  16. Richardson Ch. Microservices patterns. With examples in Java. Shelter Island: Manning; 2019.
  17. NextGIS Web documentation. 2011-2024. Available at: https://docs.nextgis.com/docs_ngweb/source/toc.html (accessed 09.10.2024).
  18. PostgreSQL: Documentation. Available at: https://postgrespro.com/docs/postgresql (accessed 09.10.2024).
  19. PostGIS Documentation. 2023. Available at: https://postgis.net/documentation/ (accessed 09.10.2024).
  20. Kafka 3.8 Documentation. 2024. Available at: https://kafka.apache.org/documentation/ (accessed 09.10.2024).
  21. MongoDB Manual. Available at: https://www.mongodb.com/docs/manual/ (accessed 09.10.2024).

Key words: machine learning; geoinformation system; randomized modeling; forecasting; information technology; thermokarst lake dynamics; climate change

Section: Application of GIS technologies