The use of block modeling to predict the variability of the bulk weight of titanomagnetite ore

№3 (2024)

Kantemirov V.D., Yakovlev A.M., Titov R.S.

УДК [622.12:553.494].004.94
https://doi.org/10.47148/1609-364X-2024-3-76-82

AbstractAbout the AuthorsReferences
The article presents the results of the performed studies using block modeling technologies to determine the volume weight of the titanium magnetite ore of the Northern deposit of the Gusevogorsky deposit, developed by EVRAZ KGOK OJSC. The methods used for laboratory studies of samples of titanium magnetite ore from exploration wells are described. The results of statistical processing of the obtained data are presented. The relationship between the bulk weight of the ore and the iron content in it has been established. Based on block modeling of the massif, a forecast was made for the deep horizons of the Northern Quarry of JSC EVRAZ KGOK on changes in the volume weight of ore and the total iron content in it, which will allow the company’s specialists to use the obtained data in geological and technological calculations.

Valery D. Kantemirov
Candidate of Technical Sciences, Head of the Laboratory of Quality Management of Mineral Raw Materials
Institute of Mining, Ural Branch of the Russian
Academy of Sciences
58, Mamin-Sibiryak str., Yekaterinburg, 620075, Russia
e-mail: ukrkant@mail.ru
AuthorID: 179367
ResearcherID: G-6216-2014

Andrei M. Yakovlev
Candidate of Technical Sciences, Senior Researcher
Institute of Mining, Ural Branch of the Russian
Academy of Sciences
58, Mamin-Sibiryak str., Yekaterinburg, 620075, Russia
е-mail: quality@igduran.ru
ORCID: 0000-0001-8285-6387
AuthorID: 618658

Roman S. Titov
Senior Researcher
Institute of Mining, Ural Branch of the Russian
Academy of Sciences
58, Mamin-Sibiryak str., Yekaterinburg, 620075, Russia
е-mail: ukr07@mail.ru
ORCID: 0000-0002-3569-2743
AuthorID: 179369
ResearcherID: G-6254-2014

1. GOST 5180-2015. Grunty. Metody laboratornogo opredeleniya fizicheskikh kharakteristik [GOST 5180-2015. Soils. Methods for laboratory determination of physical characteristics.]. Moscow: Standartinform; 2016. 19 p.
2. GOST 22733-2002. Grunty. Metod laboratornogo opredeleniya maksimal’noi plotnosti [GOST 22733-2002. Soils. Method for laboratory determination of maximum density]. – Moscow: Tsentr proektnoi produktsii v stroitel’stve; 2003. 19 p.
3. GOST 30416-2012. Grunty. Laboratornye ispytaniya. Obshchie polozheniya [GOST 30416-2012. Soils. Laboratory tests. General provisions]. Moscow: Standartinform, 2013. 16 p.
4. GOST 20522-2012. Grunty. Metody statisticheskoi obrabotki rezul’tatov ispytanii [GOST 20522-2012. Soils. Methods for statistical processing of test results]. Moscow: Standartinform, 2013. 18 p.
5. Kantemirov V.D., Yakovlev A.M., Titov R.S. Geoinformation technologies in the modeling of qualitative characteristics of ores. Geoinformatika. 2019;(3):12–18.
6. Yakovlev V.L., Laptev Yu.V., Yakovlev A.M. Geoinformation assessment of quality variation titanmagnetite ore in Gusevogorsk deposit. Lithosphere (Russia). 2014;(5):122–128.
7. Kantemirov V.D., Yakovlev A.M., Titov R.S. Computer simulation potentialities for solving questions of mineral resources quality management. Problems of Subsoil Use. 2016;(4):170–176.
8. Kantemirov V.D., Yakovlev A.M., Titov R.S. Estimation of quality indicators of mineral resources using geoinformation technologies of block modeling. Geoinformatika. 2020;(3):29–37. DOI: 10.47148/1609-364X-2020-3-29-37.
9. Yakovlev V.L. The study of transient processes as a new methodological approach to the development of innovative technologies for extraction and ore preparation of mineral raw materials mining deepseated complex-structured deposits. Problems of Subsoil Use. 2017;(2):5–14.
10. Kuznetsov O.L., Nikitin A.A., Cheremisina E.N. Geoinformatika i geoinformatsionnye sistemy [Geoinformatics and geographic information systems]. Moscow: VNIIgeosistem; 2005. 453 p.
11. Dem’yanov V.V., Savel’eva E.A. Geostatistika: teoriya i praktika [Geostatistics: theory and practice]. M. : Nauka; 2010. 327 p.

Key words: titanium magnetite ore; bulk weight; core; sampling; instrumental measurements; statistical data processing; block modeling

Section: Practical application