УДК 550.834.05
https://doi.org/10.47148/1609-364X-2024-3-21-29
Maria Yu. Oreshkova
Leading Specialist
Gazprom neft company group
3-5, Pochtamtskaya str., St. Petersburg, 190000, Russia
е-mail: wintersurprise@mail.ru
Alexandr V. Butorin
Candidate of Geological and Mineralogical Sciences
Associate Professor
Institute of Earth Sciences, Saint Petersburg State University
7-9, Universitetskaya nab., St. Petersburg, 199034, Russia
Head of seismic discipline
Gazprom neft company group
3-5, Pochtamtskaya str., St. Petersburg, 190000, Russia
е-mail: a.butorin@spbu.ru
ORCID: 0000-0002-6074-1439
Scopus Author ID: 56370048400
Researcher ID: B-7405-2019
SPIN-код: 8474-6120
Author ID: 877389
1. Butorin A.V., Mokhov G.V. Application of the Random Forest classification method for facies zoning according to seismic data. PRONEFT. Professionals about oil. 2021;6(3):23–29. DOI: 10.51890/2587-7399-2021-6-3-23-29.
2. Ol’neva T.V. Seismofatsial’nyi analiz. Obrazy geologicheskikh protsessov i yavlenii v seismicheskom izobrazhenii [Seismic facies analysis. Images of geological processes and phenomena in seismic representation]. Moscow–Izhevsk: IKI RAN; 2017. 152 p.
3. Hilbert. In: SciPy documentation 1.14.0. 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html (accessed 02.08.2024).
4. GridSearchCV. In: Scikit-Learn 1.5.1. 2024. Available at: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (accessed 02.08.2024).
5. Ensembles: Gradient boosting, random forests, bagging, voting, stacking. In: Scikit-Learn 1.5.1.2024. Available at: https://scikit-learn.org/stable/modules/ensemble.html (accessed 02.08.2024).
6. Machine Learning Tutorial. GeeksforGeeks. 20.06.2024. Available at: https://www.geeksforgeeks.org/machine-learning/?ref=lbp (accessed 31.07.2024).
Key words: seismic exploration; dynamic interpretation; classification