Development of a GIS-module for analog search using an analytical no-code platform

№3 (2024)

Prozorova G.V., Kling E.E.

УДК 004.9
https://doi.org/10.47148/1609-364X-2024-3-12-20

AbstractAbout the AuthorsReferences
The article is devoted to the development of GIS-applications for searching analogs of oil and gas objects. Depending on the tasks to be solved and data sources used in oil and gas industry different methods of analogs search are applied. Program products developed on the basis of private methods can be used only to a limited extent, which raises the question about the expediency of resources spent on their development. For efficient creation of programs for analogues search we propose a two-stage scheme including the stage of development of a formalized search model based on analytical no-code platform and the stage of traditional final product development based on the formalized model. It is shown that analytical no-code platforms are an effective and accessible for non-programming specialists means of creating formalized models as a basis for software product development. The expediency of the development of applications for the search of analogs on the basis of geoinformation systems is substantiated. An example of implementing two-stage scheme in the development of module for searching analogs based on free geoinformation system QGIS with the use of Russian analytical no-code-platform Loginom is presented.

Galina V. Prozorova
Candidate of Pedagogical Sciences, Associate Professor
Associate Professor of the Department of Intelligent Systems
and Technologies
Industrial University of Tyumen
38, Volodarsky str., Tyumen, 625003, Russia
e-mail: prozorovagv@tyuiu.ru
ORCID: 0000-0002-1080-8826
Scopus Author ID: 57192106444
AuthorID: 720104

Elizaveta E. Kling
Student
Industrial University of Tyumen
38, Volodarsky str., Tyumen, 625003, Russia
е-mail: kling2002@mail.ru

1. Archegov V.B. Geologiya nefti i gaza: uchebnoe posobie [geology of oil and gas: a textbook]. St. Petersburg: Natsional’nyi mineral’no-syr’evoi universitet «Gornyi»; 2014. 115 p.
2. Nikonov N.I. Ratsional’nyi kompleks poiskovo-razvedochnykh rabot na neft’ i gaz: kurs lektsii [Rational complex of oil and gas exploration works: lecture course]. Ukhta: UGTU; 2006. 311 p.
3. Prozorova G.V., Turenko S.K., Shpil’man A.V. Ispol’zovanie geoinformatsionnykh tekhnologii dlya podderzhki prinyatiya reshenii na razlichnykh ehtapakh geologo-razvedochnykh rabot [Using geoinformation technologies to support decision-making at various stages of geological exploration]. In: Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii: tezisy XXIV Baikal’skoi Vserossiiskoi konferentsii (Irkutsk, 28 June – 8 July 2019). Irkutsk: ISEHM SO RAN; 2019. p. 65.
4. Podnebesnykh A.V., Khafizov A.R. Technique express estimation of analogue object for hydrocarbon reserves on the basis of their geological signs. Problems of Gathering, Treatment and Transportation of Oil and Oil Products. 2019;(3):9–18. DOI: 10.17122/ntj-oil-2019-3-9-18.
5. Glukhikh I.N., Nikiforov D.V. Decision making for modeling of oil and gas fields by using case based reasoning. Tyumen State University Herald. Physical and mathematical modeling. Oil, gas, energy. 2019;5(3):147–163.
6. Abdrakhmanova E.K., Islamov R.R., Kuznetsov A.M., Nigmatullin F.N., Antakov I.S., Kuzin I.G., Gilayev G.G. Improving the efficiency of development new oil and gas condensate reservoirs using a method for selecting an analogue (part 2). Exposition Oil Gas. 2023;(1):66–69. DOI: 10.24412/2076-6785-2023-1-66-69.
7. Karsakov A.V. Metodika podbora mestorozhdenii-analogov [Methodology for selecting analogous deposits]. In: Sbornik tezisov XIV, XV konferentsii molodykh spetsialistov AO «TomsKNIPIneft’». Tomsk: TomsKNIPIneft’; 2022. pp. 11–15.
8. Migmanov R.R., Ziazev R.R., Galiullin M.M. Automated algorithm for selecting an analogue object based on the theory of fuzzy sets. Exposition Oil Gas. 2022;(7):15–19. DOI: 10.24412/2076-6785-2022-7-15-19.
9. Zakirov A.R., Kiryanov E.L., Bukhanov N.V., Belozerov B.V., Kulnevich A.D., Chugunov R.A., Slivkin S.S. Cognitive approach for hidden knowledge extraction from corporate information dataframes. Oil Industry. 2018;(12):76–78.
10. Grishenko M.A., Nikolaychuk O.A., Pavlov A.I., Yurin A.Yu. Software tool for development of rule-based expert systems on the basis of MDA. Educational resources and technologies. 2016;(2):144–151.
11. 5 preimushchestv low-code podkhoda k analitike [5 benefits of a low-code approach to analytics]. 13.09.2021. Available at: https://loginom.ru/blog/benefits-low-code-platforms (accessed 13.08.2024).
12. Prozorova G.V., Skochina P.S., Saranchin S.N., Chingalaev M.A. Adaptable software tools for searching objects-analogues tasks in NO-CODE concept. Geoinformatika. 2024;(1):35–41. DOI: 10.47148/1609-364X-2024-1-35-41.
13. Gustov S.V., Vorobyev N.Yu., Pakhomov S.N., Tsarkov G.Yu., Panarin M.V. Artificial intelligence technologies used for improving the efficiency of gas distribution and consumption networks. Gazovaya promyshlennost’. 2019;(S3):12–17.
14. Nikulin I.I. Neirosetevye tekhnologii obrabotki bol’shikh geologicheskikh dannykh [Neural network technologies for processing large geological data]. 15.02.2021. Available at: https://loginom.ru/blog/ld2020-nikulin (accessed 13.08.2024).
15. Rossiiskii federal’nyi geologicheskii fond [Russian Federal Geological Fund]. Available at: https://rfgf.ru/ (accessed 20.04.2024).

Key words: analogy method; oil and gas objects; analytical platform; no-code-development; GIS-module

Section: Geoinformation systems