Technology for studying the electrophysical characteristics of sedimentary rocks of South Yakutia at the railway station Kyurgellyakh using the method of remote inductive probing

№ 4 (2023)

УДК 550.370+552.08
https://doi.org/10.47148/1609-364X-2023-4-39-51

Neradovskii L.G.

AbstractAbout the AuthorReferences
The possibilities of a new technology for applying the method of remote inductive sensing at a frequency of 1,125 and 0,281 MHz in the separation interval of the emitting and receiving antennas in terms of quantitative assessment of electrophysical characteristics in the rock foundation of engineering structures at the railway station Kyurgellyakh in South Yakutia are studied. In the strata of icy and clay deluvial-eluvial formations and sedimentary rocks (dolomites, limestones), a general increase in depth of the effective values of the electrical resistance and the real part of the complex relative permittivity, which is atypical in AC geoelectrics, has been established. The range of variability of resistivity and permeability is 600–1600 Ohm·m and 3–7 arb. units. According to a sharp change (from a smaller to a larger one) in the growth rate of resistance and permeability, two boundaries were found. The first structural boundary lies at a depth of about 10 m and corresponds to the lower boundary of the area of intense weathering. The second petrophysical boundary lies at a depth of about 20 m and characterizes the transition of the highly weathered and highly fractured upper part of the sedimentary rock mass into the lower consolidated solid part located in the area of thermal rest. The obtained results give grounds to recommend a proven technology for solving the problems of geomechanics and thermophysics of frozen soils in terms of determining their strength and depth of the lower boundary of the layer of annual heat exchanges.

Leonid G. Neradovskii
Doctor of Technical Sciences,
Senior Researcher at the Laboratory of Engineering Geocryology
Melnikov Permafrost Institute SB RAS
36, Merzlotnaya Str., Yakutsk, 677010, Russia
е-mail: leoner@mpi.ysn.ru

1. Bondarenko A.T., Kovalev Yu.D., Stogova V.A. Fizicheskie svoistva karbonatnykh porod Zapadnoi Yakutii po dannym izmerenii na estestvenno-merzlom kerne [Physical properties of carbonate rocks of Western Yakutia according to measurements on a naturally frozen core]. Geologiya i geofizika. 1989;30(7):121–128.
2. Veshev A.V., Lyubtseva E.F., Leonchikov V.M., Alekseev V.M. Vremennoe rukovodstvo po metodu ehlektromagnitnogo zondirovaniya s vertikal’nym magnitnym dipolem [Interim guide for using the electromagnetic sounding method with a vertical magnetic dipole]. Moscow: Ministerstvo tsvetnoi metallurgii SSSR; 1978. 45 p.
3. Vladov M.L. Georadiolokatsionnye issledovaniya po avtodorogam : uchebnoe posobie [Georadar research on roads: tutorial]. Tver: GERS; 2012. 192 p.
4. Vladov M.L., Sudakova M.S. Georadiolokatsiya: ot fizicheskikh osnov do perspektivnykh napravlenii: uchebnoe posobie [Ground-penetrating radar: from physical foundations to promising areas: tutorial]. Moscow: GEOS; 2017. 240 p.
5. Grib N.N., Samokhin A.V. Fiziko-mekhanicheskie svoistva uglevmeshchayushchikh porod Yuzhno-Yakutskogo basseina [Physico-mechanical properties of coal-bearing rocks in the South Yakutian basin]. Novosibirsk: Nauka; 1999. 240 p.
6. GOST 20522–75. Grunty. Metod statisticheskoi obrabotki rezul’tatov opredelenii kharakteristik [National Standard 20522–75. Soils. Method for statistical processing of characteristics determination results]. Moscow: Izdatel’stvo standartov; 1976. 13 p.
7. GOST 21135.2–84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii [National Standard 21135.2–84. Rocks. Methods for determination of axial compression strength]. Moscow: Izdatel’stvo standartov; 1984. 7 p.
8. GOST 20522–96. Grunty. Metody statisticheskoi obrabotki rezul’tatov ispytanii [National Standard 20522–96. Soils. Methods for statistical processing of test results]. Moscow: Izdatel’stvo standartov; 1997. 24 p.
9. GOST 20522–2012. Grunty. Metody statisticheskoi obrabotki rezul’tatov ispytanii [National Standard 20522–2012. Soils. Methods for statistical processing of test results]. Moscow: Standartinform; 2013. 16 p.
10. GOST 25100–2020. Grunty. Klassifikatsiya [National Standard 25100–2020. Soils. Classification]. Moscow: Standartinform; 2020. 38 p.
11. Zheleznyak M.N. Geotemperaturnoe pole i kriolitozona yugo-vostoka Sibirskoi platformy [Geotemperature field and permafrost zone of the southeast of the Siberian platform]. Novosibirsk: Nauka; 2005. 227 p.
12. Zaderigolova M.M. Radiovolnovoi metod v inzhenernoi geologii i geoehkologii [The radiowave method in engineering geology and environmental geology]. Moscow: MGU; 1998. 320 p.
13. Igolkin V.I., Shaidurov G.YA., Tronin O.A., Khokhlov M.F. Metody i apparatura ehlektrorazvedki na peremennom toke [Methods and equipment for AC electrical resistivity surveying]. Krasnoyarsk: SFU; 2016. 272 p.
14. Frantov G.S. (ed.). Instruktsiya po ehlektrorazvedke [Tutorial on resistivity methods]. Leningrad: Nedra; 1984. 534 p.
15. Kolomenskii N.V. Inzhenernaya geologiya. Uchebnik dlya geologorazvedochnykh tekhnikumov. [Engineering geology. Textbook for geol.-reconnaissance. technical schools]. Vol. 2. Pt. 2. Moscow: Gosgeolizdat; 1956. 320 p.
16. Kolomenskii N.V. Obshchaya metodika inzhenerno-geologicheskikh issledovanii [General methodology of engineering-geological research]. Moscow: Nedra; 1968. 342 p.
17. Kolomenskii N.V. Nekotorye problemy razvitiya inzhenernoi geologii [Some problems in the development of engineering geology]. In: Puti dal’neishego razvitiya inzhenernoi geologii : materialy diskussii 1-go Mezhdunarodnogo kongressa po inzhenernoi geologii. Moscow: MGU; 1971. pp. 36–40.
18. Kompleks srednechastotnoi apparatury ehlektromagnitnogo zondirovaniya. Tekhnicheskoe opisanie [SEMZ system for medium-frequency electromagnetic sounding. Specifications]. Krasnoyarsk: Sibtsvetmetavtomatika; 1991. 30 p.
19. Kompleks spektral’no-korrelyatsionnogo analiza dannykh «Koskad 3D». Versiya 2008.1 [Complex of spectral-correlation data analysis Coscad-3D. Version 2008.1]. Pt. 1. Moscow: RGGRU; 2008. 118 p.
20. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and tools for integrated data analysis]. 4th edn. Moscow: Forum; INFRA-M; 2006. 512 p.
21. Lebedev V.F., Onushchenko V.I., Litvintseva L.M. Kompleks SEhMZ. Metodicheskoe posobie [SEMZ system. A methodological guideline]. Krasnoyarsk: Sibtsvetmetavtomatika; 1991. 83 p.
22. Levkovich A.I. Metodika obosnovaniya sostava i ob”emov inzhenerno-geologicheskikh izyskanii dlya stroitel’stva razlichnykh tipov zdanii i sooruzhenii promyshlennogo, sel’skokhozyaistvennogo i zhilishchno-grazhdanskogo naznacheniya v raionakh rasprostraneniya vechnomerzlykh gruntov s uchetom trebovanii proektirovaniya [Methodology for substantiating the composition and volume of engineering-geological surveys for the construction of various types of buildings and structures for industrial, agricultural and residential-civil purposes in areas of permafrost, taking into account design requirements]. Moscow: Strojizyskaniya; 1989. 173 p.
23. Melnikov A.E., Pavlov S.S., Kolodeznikov I.I. Rock destruction of the body of railroad of the Tommot-Kerdem Amur-Yakutsk new line under the influence of the frost weathering. Modern problems of science and education. 2014;(2). Available at: https://science-education.ru/ru/article/view?id=12945 (accessed 13.09.2023).
24. Neradovskii L.G. Errors in average strength estimates of sedimentary rock masses in South Yakutia based on geometric induction sounding data. Geoinformatika. 2023;(1):48–62. DOI: 10.47148/1609-364X-2023-1-48-62.
25. Neradovskii L.G. Approbation and verification outside the city of Neryungri of a probabilistic model for predicting the strength of sedimentary rocks. The Eurasian Scientific Journal. 2023;15(4):02NZVN423. Available at: https://esj.today/PDF/02NZVN423.pdf (accessed 13.09.2023).
26. Nikitin A.A. Statisticheskie metody vydeleniya geofizicheskikh anomalii [Statistical methods for identifying geophysical anomalies]. Moscow: Nedra; 1979. 280 p.
27. Programma obrabotki dannykh mnogoraznosnogo ehlektroprofilirovaniya sposobom obratnoi veroyatnosti dlya lineinykh izyskanii. Stadiya – avtomatizatsiya kameral’nykh rabot [The program for processing data of multi-space electrical profiling by the method of inverse probability for linear surveys. Stage – automation of office work]. Yakutsk: YakutTISIZ; 1987. 21 p.
28. Sposob georadiolokatsii mnogoletnemerzlykh porod [The method of georadialocation of permafrost]: patent 2490671 Rus. Federation. L. G. Neradovskii; applicant L. G. Neradovskii. № 2011125238/28. Claimed 17.06.2011; published 20.08.2013. Bulletin No. 23. 11 p.
29. Titlinov V.S., Zhuravleva R.B. Tekhnologiya distantsionnykh induktivnykh zondirovanii [The technology of distance inductive sounding]. Yekaterinburg: Nauka; 1995. 56 p.
30. Kudryavtsev V.A. (ed.). Yuzhnaya Yakutiya: merzlotno-gidrogeologicheskie i inzhenerno-geologicheskie usloviya Aldanskogo gornopromyshlennogo raiona [Southern Yakutia: permafrost, hydrology and geotechnical conditions in the Aldan mining district]. Moscow: MGU; 1975. 444 p.
31. Jol H.M. (ed.) Ground penetrating radar theory and applications. Amsterdam: Elsevier; 2009. 523 p.
32. Edwards, L.S. A modified pseudosection for resistivity and induced polarization. Geophysics. 1977;42(5):1020–1036. DOI: 10.1190/1.1440762.

Key words: station Kyurgellyakh, deduvial-eluvial formations, sedimentary rock mass, remote inductive sounding method, frequency 1,125 and 0,281 MHz, dielectric constant, electrical resistivity, effective depth

Section: Modeling geo objects and geo-processes