Unmanned Aerial Photography Futures to explore surface deformations and their visualization on the geoportal “ActiveTectonics”

№1 (2023)

Lunina O.V., Gladkov A.A.

УДК 528.7 + 551.24.08 + 004.6
https://doi.org/10.47148/1609-364X-2023-1-18-30

AbstractAbout the AuthorsReferences
On the example of the Rita River delta and alluvial fan of the Shartlai River located on the northwestern coast of Lake Baikal, we show the possibilities of ultra-detailed aerial photography, which allows tracing surface discontinuities with displacements from a few centimeters. The software package “Agisoft Metashape” was applied for analyzing the multi-temporal digital elevation models with the same spatial resolution of 1,67 cm/pixel to fix possible changes in the earth’s surface over the year for the local area of earthquake-induced ground failures at Cape Rytyi. It has been established that most of this part has sunk by an average of 5–10 cm per year, and in the axial parts of the faults, subsidence has reached 33 cm. The greatest accumulation of sediments (up to 40 cm thick in some places) occurred on the shore, which is mainly due to the geological activity of the waves of Lake Baikal. Based on the relationship between ruptures and alluvial fans of different ages, we concluded at least two rupturing paleoearthquakes at Cape Shartlai. On the author’s geoportal “ActiveTectonics”, we uploaded some materials of unmanned aerial photography and geological objects in the form of orthophotomaps, digital elevation models and 360° panoramas that significantly expands the possibilities of data perception which are the basis for scientific results and conclusions.
Oksana V. Lunina
Doctor of Geological and Mineralogical Sciences,
Principal Researcher
Tectonophysics Laboratory, Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Sciences
128, Lermontova Str., Irkutsk, 664033, Russia
е-mail: lounina@crust.irk.ru
ORCID: 0000-0001-7743-8877

Anton A. Gladkov
Candidate of Geological and Mineralogical Sciences, Researcher
Tectonophysics Laboratory, Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Sciences
128, Lermontova Str., Irkutsk, 664033, Russia
Center for the Development of Continuing Education of Children,
Ministry of Education of Irkutsk Region
5/6, Sergeeva Str., Irkutsk, 664043, Russia
е-mail: anton90ne@rambler.ru
ORCID: 0000-0003-4235-6745

  1. Gonçalves J.A., Henriques R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing. 2015;104:101–111. DOI: 10.1016/j.isprsjprs.2015.02.009.
  2. Tmušić G., Manfreda S., Aasen H., James M.R., Gonçalves G., Ben-Dor E., Brook A., Polinova M., Arranz J.J., Mészáros J., Zhuang R.,, Johansen K.,, Malbeteau Y., De Lima I.P., Davids C., Herban S., McCabe M.F. Current Practices in UAS-based Environmental Monitoring. Remote sensing. 2020;12(6):1001. DOI:10.3390/rs12061001.
  3. Cheng Z., Gong W., Tang H., Juang C.Н, Deng Q., Chen J.,
    Ye X.
    UAV photogrammetry-based remote sensing and preliminary assessment of
    the behavior of a landslide in Guizhou, China. Engineering Geology. 2021;289:106172. DOI: 10.1016/j.enggeo.2021.106172.
  4. AirPano. A virtual journey around the world. 2022. Available at: https://www.airpano.com/ (accessed 14.11.2022).
  5. ActiveTectonics”. Database of Pliocene-Quaternary Faults. Available at: http://activetectonics.ru/indexeng.html (accessed 14.11.2022).
  6. Lunina O.V., Gladkov A.A., Caputo R., Gladkov A.S. Developing relational database for seismotectonic analysis and seismic hazard estimation of the southern sector of East Siberia. Geoinformatika. 2011;2:26–35.
  7. Gladkov A.A., Lunina O.V., Andreyev A.V. Some aspects of development information system for integration data on active tectonics. Geoinformatika. 2013;4:6–14.
  8. Rogozhin E.A. Ocherki regional’noi seismotektoniki [Essays in regional seismotectonics]. Moscow: IFZ RAN; 2012. 340 p.
  9. Lunina O.V., Gladkov A.A., Denisenko I.A. Signatures of Creep in the Zunduk Fault Damage Zone on the Northwestern Coast of Lake Baikal. The Bulletin of Irkutsk State University. Series: Earth Sciences. 2021;35:57–70. DOI: 10.26516/2073-3402.2021.35.57.
  10. Agisoft Metashape User Manual. Standard Edition, Version 1.7. 2021. Available at: https://www.agisoft.com/pdf/metashape_1_7_en.pdf (accessed 14.11.2022).
  11. Lunina O.V., Gladkov A.A. The rupturing phenomena in the deltaic deposits of cape Rytyi on the northwestern shore of Lake Baikal. Russian Geology and Geophysics. 2022;63(2):125–136. DOI: 10.2113/RGG20204270.
  12. Stuiver M., Reimer P.J., Reimer R.W. Calib 7.1. Available at: http://calib.org (accessed 05.03.2022).
  13. Chipizubov, A.V., Mel’nikov, A.I., Stolpovskii A.V., Baskakov V.S. Segmentation of paleoseismic dislocations in the North Baikal fault zone. Doklady Earth sciences. 2003;388(1):77–80.
  14. Blanton C.M., Rockwell T.K., Gontz A., Kelly J.T. Refining the spatial and temporal signatures of creep and co-seismic slip along the southern San Andreas Fault using very high resolution UAS imagery and SfM-derived topography, Coachella Valley, California. Geomorphology. 2020;357:107064. DOI: 10.1016/j.geomorph.2020.107064.
  15. Liu-Zeng J., Yao W., Liu X., Shao Y., Wang W., Han L., Wang Y., Zeng X., Li J., Wang Z., Liu Z., Tu H. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 MW 7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau. Earthquake Research Advances. 2022;2(2):100140. DOI: 10.1016/j.eqrea.2022.100140.
  16. Ayoub F., Leprince S., Avouac J.-P. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS Journal of Photogrammetry and Remote Sensing. 2009;64(6):551–560. DOI: 10.1016/j.isprsjprs.2009.03.005.

Key words: high resolution unmanned aerial system, rupture, earth surface, 360° panorama

Section: Conference proceedings ITES-2022