УДК 004.65:550.384.5

© А.В. Воробьев, Г.Р. Шакирова

А.В. Воробьев, Г.Р. Шакирова РАСЧЕТ И АНАЛИЗ ДИНАМИКИ ПАРАМЕТРОВ ГЕОМАГНИТНОГО ПОЛЯ ВНУТРИЗЕМНЫХ ИСТОЧНИКОВ ЗА ПЕРИОД 2010-2015 ГГ.

Введение

В настоящее время учеными и специалистами различных профилей особое внимание уделяется изучению динамики параметров геомагнитного поля (ГМП) в целом, а также ГМП внутриземных источников и геомагнитного диполя в частности. В первую очередь такой интерес обусловлен актуальной проблемой исследования и прогнозирования динамики смещения полюсов ГМП и моделирования его возможных последствий [1].

Традиционно полный вектор индукции ГМП, наблюдаемый в любой точке географического пространства, однозначно заданный пространственновременными координатами (широта, долгота, высота над уровнем моря и год), рассматривается как сумма двух составляющих [2-3]:

$$\boldsymbol{B}_{ge} = \boldsymbol{B}_1 + \boldsymbol{B}_2,$$

где **B**₁ – вектор индукции ГМП внутриземных источников; **B**₂ – регулярная составляющая вектора индукции ГМП магнитосферных токов, вычисляемая в солнечно-магнитосферной системе координат.

Известно, что ГМП внутриземных источников, обусловленное полем электрических токов в земном ядре (главное поле), составляет ~98% всего поля, а поле земного магнетизма горных пород – ~2%. При этом поле земной коры убывает с высотой значительно быстрее, чем главное поле, и начиная с высоты ~100 км им практически пренебрегают [4].

Вместе с тем магнитное поле магнитосферных токов описывает регулярную составляющую геомагнитосферы, зависит от параметров межпланетной среды и отражает известное сжатие магнитосферы Земли на дневной стороне из-за взаимодействия с солнечным ветром, асимметрию «день-ночь» (поле на ночной стороне ослаблено), суточные, сезонные, годовые и прочие периодические вариации поля [5].

Математическое, методическое и алгоритмическое обеспечение расчета параметров геомагнитного поля внутриземных источников

Решая задачу аналитической оценки параметров *B*₁, модель главного поля обычно представляют

рядами сферических гармоник как функцию от географических координат.

Так, скалярный потенциал индукции ГМП внутриземных источников U [нТл·км] в точке пространства со сферическими координатами r, θ , λ определяется выражением (1):

$$U = R_3 \sum_{n=1}^{N} \sum_{m=0}^{n} \left(g_n^m \cos(\lambda m) + h_n^m \sin(\lambda m) \right) \left(\frac{R_3}{r} \right)^{n+1} P_n^m \cos\theta, (1)$$

где *r* – расстояние от центра Земли до точки наблюдения (геоцентрическое расстояние), (км); λ – долгота от Гринвичского меридиана, (градусы); θ – полярный угол (дополнение до широты, $\theta = (\pi/2) - \varphi'$, (градусы), где φ' – широта в сферических координатах, (градусы); R_3 – средний радиус Земли, R_3 = 6371,03 км; $g_n^{m}(t)$, $h_n^{m}(t)$ – сферические гармонические коэффициенты, (нТл) (табл. 1-2 и 3-4 для эпох 2010 и 2015 соответственно), зависящие от времени; P_n^m – нормированные по Шмидту присоединенные функции Лежандра степени *n*, порядка *m* [6-8].

Выражение (1) широко известно как ряд Гаусса и общепризнанно в качестве международного эталона невозмущенного состояния ГМП [9-10]. При этом вопрос об оптимальной длине сферического гармонического ряда на сегодняшний день остается открытым. Чтобы выяснить значение членов высоких порядков, Г. Фанзелау вычислил коэффициенты g_n^m и h_n^m до 15-го порядка, В. Колесова и Э. Кропачев – до 23-го порядка. Основное, что следует из анализа этих данных, – это резкое уменьшение всех коэффициентов для 6–8-го порядков и затем медленное убывание их с некоторыми колебаниями. Однако ни у одного коэффициента, вплоть до 23-го порядка, нет резкого увеличения, что указывало бы на источники магнитного поля локального характера.

Анализ результатов расчета с большим числом членов подтверждает предположение Гаусса о сходимости сферического гармонического ряда, представляющего геомагнитный потенциал. Обычно при сферических гармонических анализах ряды ограничиваются 8-10 членами. Однако при достаточно однородных и высокоточных исходных данных,

	1											
0	0	0	0	0	0	0	0	0	0	0	0	0
-29496,5	-1585,9	0	0	0	0	0	0	0	0	0	0	0
-2396,6	3026,0	1668,6	0	0	0	0	0	0	0	0	0	0
1339,7	-2326,3	1231,7	634,2	0	0	0	0	0	0	0	0	0
912,6	809,0	166,6	-357,1	89,7	0	0	0	0	0	0	0	0
-231,1	357,2	200,3	-141,2	-163,1	-7,7	0	0	0	0	0	0	0
72,8	68,6	76,0	-141,4	-22,9	13,1	-77,9	0	0	0	0	0	0
80,4	-75,0	-4,7	45,3	14,0	10,4	1,6	4,9	0	0	0	0	0
24,3	8,2	-14,5	-5,7	-19,3	11,6	10,9	-14,1	-3,7	0	0	0	0
5,4	9,4	3,4	-5,3	3,1	-12,4	-0,8	8,4	-8,4	-10,1	0	0	0
-2,0	-6,3	0,9	-1,1	-0,2	2,5	-0,3	2,2	3,1	-1,0	-2,8	0	0
3,0	-1,5	-2,1	1,6	-0,5	0,5	-0,8	0,4	1,8	0,2	0,8	3,8	0
-2,1	-0,2	0,3	1,0	-0,7	0,9	-0,1	0,5	-0,4	-0,4	0,2	-0,8	0

Таблица 2

Матрица коэффициентов $h^m_{n,t0}$, нТл (для эпохи 2010)

0	0	0	0	0	0	0	0	0	0	0	0	0
0	4945,1	0	0	0	0	0	0	0	0	0	0	0
0	-2707,7	-575,4	0	0	0	0	0	0	0	0	0	0
0	-160,5	251,7	-536,8	0	0	0	0	0	0	0	0	0
0	286,4	-211,2	164,4	-309,2	0	0	0	0	0	0	0	0
0	44,7	188,9	-118,1	0,1	100,9	0	0	0	0	0	0	0
0	-20,8	44,2	61,5	-66,3	3,1	54,9	0	0	0	0	0	0
0	-57,8	-21,2	6,6	24,9	7,0	-27,7	-3,4	0	0	0	0	0
0	10,9	-20,0	11,9	-17,4	16,7	7,1	-10,8	1,7	0	0	0	0
0	-20,5	11,6	12,8	-7,2	-7,4	8,0	2,2	-6,1	7,0	0	0	0
0	2,8	-0,1	4,7	4,4	-7,2	-1,0	-4,0	-2,0	-2,0	-8,3	0	0
0	0,1	1,7	-0,6	-1,8	0,9	-0,4	-2,5	-1,3	-2,1	-1,9	-1,8	0
0	-0,8	0,3	2,2	-2,5	0,5	0,6	0,0	0,1	0,3	-0,9	-0,2	0,8

Таблица 3

Матрица коэффициентов $g^{m}_{n,t0}$, нТл (для эпохи 2015)

0	0	0	0	0	0	0	0	0	0	0	0	0
-29438,5	-1501,1	0	0	0	0	0	0	0	0	0	0	0
-2445,3	3012,5	1676,6	0	0	0	0	0	0	0	0	0	0
1351,1	-2352,3	1225,6	581,9	0	0	0	0	0	0	0	0	0
907,2	813,7	120,3	-335,0	70,3	0	0	0	0	0	0	0	0
-232,6	360,1	192,4	-141,0	-157,4	4,3	0	0	0	0	0	0	0
69,5	67,4	72,8	-129,8	-29,0	13,2	-70,9	0	0	0	0	0	0
81,6	-76,1	-6,8	51,9	15,0	9,3	-2,8	6,7	0	0	0	0	0
24,0	8,6	-16,9	-3,2	-20,6	13,3	11,7	-16,0	-2,0	0	0	0	0
5,4	8,8	3,1	-3,1	0,6	-13,3	-0,1	8,7	-9,1	-10,5	0	0	0
-1,9	-6,5	0,2	0,6	-0,6	1,7	-0,7	2,1	2,3	-1,8	-3,6	0	0
3,1	-1,5	-2,3	2,1	-0,9	0,6	-0,7	0,2	1,7	-0,2	0,4	3,5	0
-2,0	-0,3	0,4	1,3	-0,9	0,9	0,1	0,5	-0,4	-0,4	0,2	-0,9	0

38

Таблица 4

0	0	0	0	0	0	0	0	0	0	0	0	0
0	4796,2	0	0	0	0	0	0	0	0	0	0	0
0	-2845,6	-642,0	0	0	0	0	0	0	0	0	0	0
0	-115,3	245,0	-538,3	0	0	0	0	0	0	0	0	0
0	283,4	-188,6	180,9	-329,5	0	0	0	0	0	0	0	0
0	47,4	196,9	-119,4	16,1	100,1	0	0	0	0	0	0	0
0	-20,7	33,2	58,8	-66,5	7,3	62,5	0	0	0	0	0	0
0	-54,1	-19,4	5,6	24,4	3,3	-27,5	-2,3	0	0	0	0	0
0	10,2	-18,1	13,2	-14,6	16,2	5,7	-9,1	2,2	0	0	0	0
0	-21,6	10,8	11,7	-6,8	-6,9	7,8	1,0	-3,9	8,5	0	0	0
0	3,3	-0,3	4,6	4,4	-7,9	-0,6	-4,1	-2,8	-1,1	-8,7	0	0
0	-0,1	2,1	-0,7	-1,1	0,7	-0,2	-2,1	-1,5	-2,5	-2,0	-2,3	0
0	-1,0	0,5	1,8	-2,2	0,3	0,7	-0,1	0,3	0,2	-0,9	-0,2	0,7

Матрица коэффициентов $h^{m}_{n,0}$, нТл (для эпохи 2015)

например полученных со спутника, возможно продление рядов до 12 и 13 гармоник. Коэффициенты гармоник более высоких порядков по величине сравнимы или меньше погрешности определения коэффициентов. Так, к примеру, при длине ряда 11-13 гармоник погрешность вычисления ГМП на поверхности Земли не превышает 2%.

По причине временных вариаций главного поля коэффициенты гармонических рядов (сферические гармонические коэффициенты) периодически (раз в 5 лет) пересчитывают с учетом новых данных, получаемых со спутников и магнитных обсерваторий.

Изменения главного поля за один год, или так называемый вековой ход, также представляются рядами сферических гармоник (табл. 5-6 и 7-8 для эпох 2010 и 2015 соответственно).

Нормированные по Шмидту присоединенные функции Лежандра в выражении (1), представляют собой ортогональный многочлен, имеющий вид (2).

$$P_n^m(\cos\theta) = 1 \cdot 3 \cdot 5 \dots (2n-1) \cdot \sqrt{\frac{\varepsilon_m}{(n+m)!(n-m)!}} \times$$

$$\times \sin^{m} \theta \Big[\cos^{n-m} \theta - \frac{(n-m)(n-m-1)}{2(2n-1)} \cos^{n-m-2} \theta + \\ + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)}{2 \cdot 4 (2n-1)(2n-3)} \cos^{n-m-4} \theta - ... \Big], (2)$$

где ε_m – нормировочный множитель ($\varepsilon_m = 2$ для $m \ge 1$ и $\varepsilon_m = 1$ для m = 0); n – степень сферических гармоник; m – порядок сферических гармоник.

Здесь важно отметить, что в определенных научных задачах некоторые геопространственные данные (например, положение искусственных спутников Земли в пространстве) представляют в географических (геодезических) координатах φ , λ , h, основанных на аппроксимации поверхности Земли эллипсоидом вращения. Наряду с этим в задачах иного рода эллиптичностью Земли пренебрегают,

Таблица 5

Матрица коэффициентов g^m_n , нТл/год (для эпохи 2010)

0	0	0	0	0	0	0	0	0	0	0	0	0
11,4	16,7	0	0	0	0	0	0	0	0	0	0	0
-11,3	-3,9	2,7	0	0	0	0	0	0	0	0	0	0
1,3	-3,9	-2,9	-8,1	0	0	0	0	0	0	0	0	0
-1,4	2,0	-8,9	4,4	-2,3	0	0	0	0	0	0	0	0
-0,5	0,5	-1,5	-0,7	1,3	1,4	0	0	0	0	0	0	0
-0,3	-0,3	-0,3	1,9	-1,6	-0,2	1,8	0	0	0	0	0	0
0,2	-0,1	-0,6	1,4	0,3	0,1	-0,8	0,4	0	0	0	0	0
-0,1	0,1	-0,5	0,3	-0,3	0,3	0,2	-0,5	0,2	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

	Матрица коэффициентов <u>h</u> ^m _n , нТл/год (для эпохи 2010)										
0	0	0	0	0	0	0	0	0	0	0	0
0	-28,8	0	0	0	0	0	0	0	0	0	0
0	-23,0	-12,9	0	0	0	0	0	0	0	0	0
0	8,6	-2,9	-2,1	0	0	0	0	0	0	0	0
0	0,4	3,2	3,6	-0,8	0	0	0	0	0	0	0
0	0,5	1,5	0,9	3,7	-0,6	0	0	0	0	0	0
0	-0,1	-2,1	-0,4	-0,5	0,8	0,5	0	0	0	0	0
0	0,6	0,3	-0,2	-0,1	-0,8	-0,3	0,2	0	0	0	0
0	0,0	0,2	0,5	0,4	0,1	-0,1	0,4	0,4	0	0	0

Таблица 7

Матрица коэффициентов g^{m}_{n} , нТл/год (для эпохи 2015)

0	0	0	0	0	0	0	0	0	0	0	0	0
10,7	17,9	0	0	0	0	0	0	0	0	0	0	0
-8,6	-3,3	2,4	0	0	0	0	0	0	0	0	0	0
3,1	-6,2	-0,4	-10,4	0	0	0	0	0	0	0	0	0
-0,4	0,8	-9,2	4,0	-4,2	0	0	0	0	0	0	0	0
-0,2	0,1	-1,4	0,0	1,3	3,8	0	0	0	0	0	0	0
-0,5	-0,2	-0,6	2,4	-1,1	0,3	1,5	0	0	0	0	0	0
0,2	-0,2	-0,4	1,3	0,2	-0,4	-0,9	0,3	0	0	0	0	0
0,0	0,1	-0,5	0,5	-0,2	0,4	0,2	-0,4	0,3	0	0	0	0
0,0	-0,1	-0,1	0,4	-0,5	-0,2	0,1	0,0	-0,2	-0,1	0	0	0
0,0	0,0	-0,0	0,3	-0,1	-0,1	-0,1	0,0	0,2	-0,1	-0,2	0	0
0,0	0,0	-0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	-0,1	-0,1	0
0,1	0,0	0,0	0,1	-0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0

Таблица 8

Матрица коэффициентов <u>*h*</u>^{*m*}, нТл/год (для эпохи 2015)

			, T	11	,	— n'	, ,		,			
0	0	0	0	0	0	0	0	0	0	0	0	0
0	-26,8	0	0	0	0	0	0	0	0	0	0	0
0	-27,1	-13,3	0	0	0	0	0	0	0	0	0	0
0	8,4	-0,4	2,3	0	0	0	0	0	0	0	0	0
0	-0,6	5,3	3,0	-5,3	0	0	0	0	0	0	0	0
0	0,4	1,6	-1,1	3,3	0,1	0	0	0	0	0	0	0
0	0,0	-2,2	-0,7	0,1	1,0	1,3	0	0	0	0	0	0
0	0,7	0,5	-0,2	-0,1	-0,7	0,1	0,1	0	0	0	0	0
0	-0,3	0,3	0,3	0,6	-0,1	-0,2	0,3	0,0	0	0	0	0
0	-0,0	-0,1	-0,2	0,1	0,1	0,0	-0,2	0,4	0,3	0	0	0
0	0,1	-0,1	0,0	0,0	-0,2	0,1	-0,1	-0,2	0,1	-0,1	0	0
0	0,0	0,1	0,0	0,1	0,0	0,0	0,1	0,0	-0,1	0,0	-0,1	0
0	0,0	0,0	-0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Учитывая такого рода сжатия, r и φ' будут вычисляться согласно выражениям (3) и (4) соответственно [11]:

$$r^{2} = h^{2} + 2h\sqrt{a^{2}\cos^{2}\varphi + b^{2}\sin^{2}\varphi} + \frac{a^{4}\cos^{2}\varphi + b^{4}\sin^{2}\varphi}{a^{2}\cos^{2}\varphi + b^{2}\sin^{2}\varphi}, (3)$$
$$tg\varphi' = \frac{b^{2} + h\sqrt{a^{2}\cos^{2}\varphi + b^{2}\sin^{2}\varphi}}{a^{2} + h\sqrt{a^{2}\cos^{2}\varphi + b^{2}\sin^{2}\varphi}}tg\varphi, \quad (4)$$

где φ – географическая (геодезическая) широта точки в пространстве, (градусы); h – высота точки над уровнем моря, (градусы); a – большая полуось земного эллипсоида вращения; b – малая полуось земного эллипсоида вращения.

Учитывая, что долготы λ в сферических и геодезических координатах тождественны, составляющие вектора индукции ГМП внутриземных источников X', Y', Z' в нТл определятся как:

$$X' = \frac{1}{r} \frac{\partial U}{\partial \theta} = \sum_{n=1}^{N} \sum_{m=0}^{n} \left(g_n^m \cos(m\lambda) + h_n^m \sin(m\lambda) \right) \left(\frac{R_3}{r} \right)^{n+2} \frac{\partial P_n^m \cos\theta}{\partial \theta},$$
$$Z' = \frac{\partial U}{\partial r} = -\sum_{n=1}^{N} \sum_{m=0}^{n} (n+1) \left(g_n^m \cos(m\lambda) + h_n^m \sin(m\lambda) \right) \left(\frac{R_3}{r} \right)^{n+2} P_n^m \cos\theta,$$

$$\mathbf{Z}' = \frac{\partial U}{\partial r} = -\sum_{n=1}^{N} \sum_{m=0}^{n} (n+1) \left(g_n^m \cos(m\lambda) + h_n^m \sin(m\lambda) \right) \left(\frac{R_3}{r} \right)^{n+2} P_n^m \cos\theta.$$

Таким образом, в точке с координатами φ , λ , *h* прямоугольные составляющие вектора индукции (в геодезической системе координат) определятся согласно выражениям (5)–(8), а модуль вектора индукции ГМП – согласно формуле (9):

$$\mathbf{X} = \mathbf{X}' \cos(\varphi - \varphi') + \mathbf{Z}' \sin(\varphi - \varphi'), \tag{5}$$

$$Y = Y', \tag{6}$$

$$\mathbf{Z} = \mathbf{Z}'\cos(\varphi - \varphi') + \mathbf{X}'\sin(\varphi - \varphi'), \tag{7}$$

$$|H| = \sqrt{X^2 + Y^2}, \qquad (8)$$

$$\boldsymbol{B}_1 = \sqrt{\boldsymbol{X}^2 + \boldsymbol{Y}^2 + \boldsymbol{Z}^2}, \qquad (9)$$

где |H| — горизонтальная составляющая вектора индукции ГМП В₁ (проекция **B**₁ на горизонтальную плоскость **XY**).

Следует отметить, что значения элемента поля *Y* в выражении (6) для точки пространства при $\theta = 0$ обычно получают линейной интерполяцией.

Угловые элементы геомагнитного диполя определим из следующих соотношений:

 $D = \operatorname{arctg}(\boldsymbol{Y}/\boldsymbol{X}); \quad I = \operatorname{arcsin}(\boldsymbol{Z}/|\mathbf{B}_1|),$

где D – магнитное склонение, т. е. угол между географическим и магнитным меридианами (положительное к востоку); I – магнитное наклонение, т. е. угол

между горизонтальной плоскостью XY и вектором B_1 (положительное к востоку).

При расчете геомагнитных элементов на заданный год *t* сферические гармонические коэффициенты $g_n^m(t)$ и $h_n^m(t)$ пересчитываются в соответствии с выражениями (10) и (11) соответственно:

$$g_{n,t}^{m} = g_{n,t0}^{m} + \underline{g}_{n}^{m} (t - t_{0}), \qquad (10)$$

$$h_{n,t}^{m} = h_{n,t0}^{m} + \underline{h}_{n}^{m} \left(t - t_{0} \right), \tag{11}$$

где t-текущий год; t_0 -год, на который известны сферические гармонические коэффициенты $g_n^m(t)$, $h_n^m(t)$; g_n^m и \underline{h}_n^m -поправка на сферические гармонические коэффициенты, связанная с вековым ходом ГМП (табл. 5-6 и 7-8 для эпох 2010 и 2015 соответственно).

Модель дипольного ГМП соответствует полю, представленному первым членом сферических гармоник выражения (1). Так, составляющие дипольного ГМП определятся из формул:

$$\boldsymbol{X}(r,\theta,\lambda) = \left[-g_{1}^{0}\sin\theta + \left(g_{1}^{1}\cos\lambda + h_{1}^{1}\sin\lambda\right)\cos\theta\right] \left(\frac{R_{3}}{r}\right)^{3},$$
$$\boldsymbol{Y}(r,\theta,\lambda) = \left[g_{1}^{1}\sin\lambda - h_{1}^{1}\cos\lambda\right] \left(\frac{R_{3}}{r}\right)^{3},$$
$$\boldsymbol{Z}(r,\theta,\lambda) = -2\left[g_{1}^{0}\cos\theta + \left(g_{1}^{1}\cos\lambda + h_{1}^{1}\sin\lambda\right)\sin\theta\right] \left(\frac{R_{3}}{r}\right)^{3}.$$

Координаты полюсов дипольного поля (геомагнитных полюсов) и его магнитный момент M[Тл·м³] находятся из выражений (12), (13) и (14) соответственно.

$$\operatorname{tg} \Phi_{0} = \frac{g_{1}^{0}}{\sqrt{\left(g_{1}^{1}\right)^{2} + \left(h_{1}^{1}\right)^{2}}},$$
(12)

$$\operatorname{tg} \Lambda_{0} = \frac{h_{1}^{1}}{g_{1}^{1}},$$
(13)

$$M = R_{3}^{3} \sqrt{\left(g_{1}^{0}\right)^{2} + \left(g_{1}^{1}\right)^{2} + \left(h_{1}^{1}\right)^{2}}.$$
 (14)

где Φ_0 и Λ_0 – географическая широта и долгота геомагнитного полюса соответственно, (градусы).

На рис. 1, 2 представлены адаптированные для программной формализации методика и алгоритм расчета параметров ГМП и геомагнитного диполя. Описание и ход построения приведенных методик и алгоритмов детально рассматривался в [11].

На базе представленных методики и алгоритма с целью повышения эффективности расчета параметров ГМП был разработан программноинструментальный комплекс GEOmagnetic_v1.0 (Свидетельство об официальной регистрации программы для ЭВМ № 2013610905. М.:РосАПО, 2013), позволяющий генерировать расчетные данные о состоянии параметров ГМП, а также осуществлять их геопространственную привязку в автоматизированном режиме с погрешностью, удовлетворяющей заявленной в ГОСТ 25645.126-85 «Поле геомагнитное. Модель поля внутриземных источников» [2]. Nº 1

Моделирование, визуализация и анализ параметров ГМП

за период 2010-2015 гг.

На рис. 3-4 в качестве примера представлен результат визуализации (в виде изолиний) результатов расчета параметров ГМП, полученных посредством программно-инструментального комплекса «GEOmagnetic_v1.0» для эпох 2010 и 2015 соответственно. Шаг изолиний как на рис. 3, 4 составляет 1000 нТл (1 мкТл), что предоставляет базу для суждений об их относительном смещении.

Интеграция разработанного инструментария с современными ГИС-технологиями [12-15] обеспечила возможность наглядно отображать динамику изменения параметров полного вектора ГМП внутриземных источников за период 2010-2015 гг. на одной графической подложке (рис. 5). Здесь пунктирной и сплошной линиями отмечено распределение параметров полного вектора ГМП внутриземных источников по состоянию на 2010 и 2015 гг. соответственно. Шаг изолиний в данном случае был задан как 2500 нТл (2,5 мкТл). На рис. 6 представлен результат визуализации параметра ΔB_1 , определяемого в соответствии с выражением (15) и обеспечивающего базу для суждения о глобальном перераспределении полного вектора ГМП внутриземных источников.

 $\Delta B_1 = B_{1_2015} - B_{1_2010}$, где B_{1_2015} и B_{1_2010} – значения вектора ГМП внутриземных источников по состоянию на 2010 и 2015 гг. соответственно.

Таким образом, очевидно, что за период 2010-2015 гг. перераспределение полного вектора ГМП внутриземных источников произошло таким образом, что в западном полушарии наблюдается его преимущественное ослабление ($\Delta B_{1_{max}} = -730,1$ нТл), а в восточном – усиление ($\Delta B_{1_{max}} = 567,2$ нТл). При этом экстремумы ослабления и усиления наблюдаются в северо-западной и юго-восточной областях планеты соответственно.

В табл. 9 приведены результаты расчета магнитного момента геомагнитного диполя, а также координаты его северного полюса, полученные в соответствии с выражениями (12)–(14).

Рис. 1. Методика расчета параметров невозмущенного ГМП

Моделирование геообъектов и геопроцессов

44

Рис. 3. Модель распределения полного вектора ГМП внутриземных источников для эпохи 2010

Рис. 4. Модель распределения полного вектора ГМП внутриземных источников для эпохи 2015

Nº 1

Рис. 5. Сравнение характера распределения полного вектора ГМП внутриземных источников для эпох 2010 и 2015

Рис. 6. Анализ приращения ГМП внутриземных источников за период с 2010-2015 гг.

Анализ данных, представленных в табл. 9, позволил сделать заключение о том, что за последние пять лет магнитный момент дипольного ГМП уменьшился на 2,218·10¹³ Тл·м³, что составляет ~0,286%, при этом северный магнитный полюс сместился из точки с координатами (-80,015° с.ш., 72,219° в.д.) в точку с координатами (-80,312° с.ш., -72,621° в.д.),

что составляет ~33,93 км в южном (географическом) направлении.

Заключение

Таким образом, расчет, моделирование и анализ динамики параметров ГМП внутриземных источников за период 2010-2015 гг. выявил: Nº 1

Таблица 9

Расчетные данные основных параметров геомагнитного диполя

Параметр Эпоха	М, Тл·м ³	Ф _N , (градус с.ш.)	А _№ , (градус в.д.)		
2010	7,745.1015	-80,015	-72,219		
2015	7,723.1015	-80,312	-72,621		

- за указанный период перераспределение полного вектора ГМП внутриземных источников произошло таким образом, что в западном полушарии наблюдается его преимущественное ослабление (ΔB_{1 min} = -730,1 нТл), а в восточном усиление (ΔB_{1 max} = 567,2 нТл);
- за последние пять лет магнитный момент дипольного ГМП уменьшился на 2,218·10¹³ Тл·м³, что составляет ~0,286%;
- северный магнитный полюс сместился из точки с координатами (-80,015° с.ш., 72,219° в.д.)
 в точку с координатами (-80,312° с.ш., -72,621° в.д.), что составляет ~33,93 км в южном (георграфическом) направлении.

Работа поддержана грантами РФФИ №№14-07-00260-а, 14-07-31344-мол-а.

Ключевые слова: геомагнитные вариации, геомагнитное поле, внутриземные источники.

ЛИТЕРАТУРА

1. Ляхов А.Н., Зецер Ю.И., Фуллер-Роуелл Т. Возможные последствия смещения магнитных полюсов для структуры и динамики верхней атмосферы Земли // Доклады Академии наук, 2006. – Т. 409. – № 5. – С. 1-3.

2. ГОСТ 25645.127-85. Магнитосфера Земли. Модель магнитного поля магнитосферных токов. – М. : Издво стандартов, 1985.

3. ГОСТ 25645.126-85. Поле геомагнитное. Модель поля внутриземных источников. – М. : Изд-во стандартов, 1985.

4. Vorobev A.V., Shakirova G.R. Pseudostorm effect: computer modelling, calculation and experiment analyzes// Proceedings of the 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, Albena, Bulgaria, June 17-26, 2014, – Vol. 1. – P. 745-751 (Scopus, DOI: 10.5593/sgem2014B21).

5. Миловзоров Г.В., Воробьев А.В., Миловзоров Д.Г. Методика описания параметров геомагнитной псевдобури // Вестник ИжГТУ. – 2013. – № 1. – С. 103-107. 6. Патент на изобретение № 2526234. Способ комплексной оценки эффекта геомагнитной псевдобури / Воробьев А.В. – М. : РосАПО, 2014. 7. Миловзоров Г.В., Воробьев А.В., Шакирова Г.Р., Кильметов Э.А. Исследование и анализ амплитудночастотных характеристик геомагнитной псевдобури, возникающей в процессе авиаперелета воздушных судов различного целевого назначения // Вестник УГАТУ. – 2014. – Т. 18. – №3 (64). – С. 132-141.

8. Воробьев А.В. Моделирование и исследование эффекта геомагнитной псевдобури // Геоинформатика. – 2013. – № 1. – С. 29-36.

9. Воробьев А.В., Шакирова Г.Р., Иванова Г.А., Попкова Е.Е. Анализ и исследование частных геомагнитных вариаций // Современные проблемы науки и образования. – 2014. – № 2.

10. Воробьев А.В. Вопросы проектирования цифровых геомагнитных обсерваторий: монография. LAP Lambert Academic Publishing G mbh & Co. KG, Berlin, – 2012. – 133 с.

11. Воробьев А.В. Способ определения параметров невозмущенного геомагнитного поля в полевых условиях // Нефтегазовое дело. – 2013. – № 1. – С. 71-80.

12. Воробьев А.В., Шакирова Г.Р. Автоматизированный анализ невозмущенного геомагнитного поля на основе технологий картографических веб-сервисов // Вестник УГАТУ. – 2013. – Т. 17. – № 5(58). – С. 177-187. 13. Vorobev A.V., Shakirova G.R. Geoinformation system of geomagnetic pseudostorm parameters registration and analysis // Вестник УГАТУ. – 2014. – Т. 18. – № 5(66). – С. 62-67.

14. Воробьев А.В., Шакирова Г.Р., Попкова Е.Е., Суворова В.А. GMPS-эффект как инновационный аспект при исследовании параметров магнитосферы Земли // Академический журнал Западной Сибири. – 2014. – Т. 10. – № 2. – С. 9.

15. Воробьев А.В., Шакирова Г.Р., Попкова Е.Е., Суворова В.А. Вопросы построения геоинформационных систем на базе известных картографических веб-сервисов // Академический журнал Западной Сибири. – 2014. – Т. 10. – № 2. – С. 10.