44

УДК 556.5:550.4

© О.Г. Савичев, Нгуен Ван Луен, В.А. Домаренко

О.Г. Савичев, Нгуен Ван Луен, В.А. Домаренко

# ИСПОЛЬЗОВАНИЕ ГИДРОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПРИ ВЫЯВЛЕНИИ ГЕОХИМИЧЕСКИХ АНОМАЛИЙ В МЕЖДУРЕЧЬЕ РЕК ГАМ И КАУ (ВЬЕТНАМ)

### Введение

Выявление геохимических аномалий и анализ условий их формирования представляет собой важный этап поисков полезных ископаемых и решения различных задач в области охраны окружающей среды [3, 9, 16, 17]. Один из аспектов этого анализа заключается в изучении водно-эрозионных образований и водно-миграционных потоков с целью оценки параметров геохимических ореолов и соотношения процессов аккумуляции и выноса веществ из геосистем разного уровня [7, 8, 20, 29], причем во многих случаях основное внимание уделяется исследованию химического состава подземных вод и условиям разгрузки [26, 28]. Имеется большое количество работ, посвященных изучению условий взаимодействия речных и морских вод, химического состава донных отложений поверхностных водных объектов суши, влиянию русловых процессов на формирование природных и антропогенных геохимических аномалий [2, 11-13, 15, 23, 25, 27]. Однако роль гидрологических условий в формировании геохимических аномалий в зоне гипергенеза изучена недостаточно полно, что и определило цель исследования - определение влияния гидрологических факторов на состояние водных объектов и обоснование соответствующих критериев выделения геохимических аномалий.

В качестве объектов исследования выбраны малые реки в административном отношении – в уезде Чодонь провинции Баккан Социалистической республики Вьетнам, в географическом – в северной части р. Хонг (р. Красная), в междуречье притоков р. Хонг – рек Гам и Кау (реки Дай, Фо Дай, Намду, Бан Тхи, Ченгу, Та Диенг, Кау). В геологическом строении исследуемого района принимают участие осадки трех структурных этажей, залегающих на допалеозойском гранитно-метаморфогенном основании нижнего структурного этажа, не вскрытом в пределах площади (рис. 1). Образования нижнего и среднего структурных этажей слагают крупную грабен-синклиналь, выполненную осадками ордовик-силурийского и девонского возрастов. Строение грабен-синклинали II III IV V VI VII VIII IX X XI XII

осложнено наложенными субизометричными впадинами, выполненными осадками верхнего структурного этажа верхнетриасового возраста, расположенными на юго-западе территории. Осадочные комплексы прорваны разновозрастными, сложно построенными интрузивами габбро-гранитной серии верхнепалеозойского и мезо-кайнозойского этапов тектоно-магматической активизации. Разновозрастные и разноориентированные тектонические структуры предопределяют мозаично-блоковое строение района и являются благоприятной основой для развития речной сети территории. Металлогенический облик района определяется наличием значительного количества проявлений и мелких месторождений свинца, цинка, железа, марганца, по-видимому, стратиформных [4, 14].

#### Исходные данные и методика исследований

Исходными данными послужили материалы гидрогеохимических исследований, проведенных в Томском политехническом университете (ТПУ) в 2015-2016 гг. Методика исследования включала в себя: 1) отбор в меженный период проб речных вод: 14-16.02.2015 г. – 10 проб речных вод (рр. Бан Тхи, Ченгу, Дай, Фо Дай, Кау, Та Диенг); 19-20.2016 г. – 11 проб речных вод и донных отложений водотоков (рр. Дай, Фо Дай, Намду, Бан Тхи, Ченгу); пробы речных вод отбирались из слоя 0,2-0,5 м от поверхности в специально подготовленные емкости; отбор проб донных отложений проводился из верхнего слоя 0,2 м с помощью донного щупа (в тех же точках, где выполнялся отбор речных вод); 2) измерение расходов воды; 3) определение химического состава речных вод, водных вытяжек из донных отложений (фракция менее 0,5 мм) в аккредитованной гидрогеохимической лаборатории ТПУ; методика изложена в [22]; 4) статистический анализ полученных данных, включая исключение экстремальных значений в соответствии с [18], расчет средних геометрических значений G и верхнего предела погрешности их определения G<sub>ир</sub> согласно [6]:





I – четвертичные отложения: нелитифицированные, галька, гравий, глины, ил; (aQ); верхний структурный этаж, формация Van Lang: II – верхняя субформация (T,n-rvl,), конгломераты, гравелиты, песчаники с прослоями иллитовых глинистых сланцев; III – нижняя субформация (Tn-rvl,) переслаивание глинисто-серицитовых сланцев и кварцитовидных песчаников с тонкими прослоями известняков; IV – интрузивный комплекс Phia Bioc (уТ, npb,), гранодиориты порфировидные биотитовые граниты, аплиты, пегматиты; V – Интрузивный комплекс Nui Chua (vTnnc), габбро-перидотиты, габбро, троктолиты, габбро-пироксениты, габбронориты, габбро-пегматиты; *средний (девонский) структурный этаж*: VI – формация Khao Loc, *верхняя субформация* (D, ,kl,) – черные известняки, мергели; нижняя субформация (D<sub>1</sub>, kl<sub>1</sub>) – глинисто-серицитовые сланцы, кварцитовидные песчаники с тонкими прослоями известняков; VII – Формация Mia Le; Верхняя субформация (D,ml,) – песчаники, известняки, мергели, переслаивающиеся с глинистыми сланцами и известковистыми филлитами; нижняя субформация (D<sub>1</sub>ml<sub>1</sub>) - глинистые, мергелистые сланцы, глинистые известняки и аргиллиты; VIII – Формация Pia Phuong: а – верхняя субформация (D<sub>1</sub>pp<sub>2</sub>) – серицит-кварцевые сланцы, риолитовые, кварц-альбитофировые туфы, мраморы; б – нижняя субформация (D,pp,) – глинисто-серицитовые сланцы, черные битуминозные аргиллиты, филлиты, доломитовые известняки и мраморы; IX – нижний (ордовикский) структурный этаж, формация Phu Ngu: a – верхняя субформация (O,-S,pn,) – кварцевые песчаники, кварциты, с прослоями биотит-андалузит-кордиеритовых сланцев; б – средняя субформация (O<sub>3</sub>-S,pn<sub>3</sub>) – черные глинисто-кремнистые сланцы, туфоалевролиты, линзы известняков; в – нижняя субформация (O,-S,pn,) – сланцы, песчаники с тонкими прослоями кремнистых аргиллитов, известковых алевролитов, туфобрекчий; 🛛 – габброиды; 🕂 – крупнозернистые граниты; 🕂 – мелкозернистые граниты; \ – тектонические нарушения; месторождения – 🌒; проявления – 💽: a) 🛠 – действующие, б) 🕉 – отработанные: Pb-Zn – свинец – цинк; Fe – железо; T(R) – уголь; Ру – пирит; §v – известняк; Sgn – глины для производства кирпича и плитки; пункты отбора геохимических проб: 1 – ●; 2 – • (1 – в 2015 г., 2 – в 2016 г.)

Рис. 1. Схема геологического строения района исследований по данным Нгуен Кинг Нуок [14]) с дополнениями авторов

Nº 1

$$G_{up} = G \cdot \exp\left(\frac{3 \cdot \sigma_{\ln}}{\sqrt{N}}\right),\tag{1}$$

где  $\sigma_{ln}$  – среднее квадратическое отклонение логарифмов концентрации вещества; N – объем выборки; 5) геоинформационный анализ территории, оценка и анализ гидроморфологических показателей.

Геоинформационный и гидрологический анализ основывался на следующих допущениях: 1) густота речной сети (отношение суммарной длины всех водотоков к площади водосбора) интерпретируется как вероятность направленного (руслового) движения поверхностных вод по водосбору P(r), а плотность распространения тектонических нарушений в пределах водосбора (отношение суммарной длины нарушений к площади водосбора) – как вероятность P(f); 2) вероятность совмещения речной сети и тектонических нарушений  $P(r \cdot f)$  в случае независимости друг от друга оценивается как произведение P(r) и P(f), а в случае зависимых величин – по формуле (2):

 $P(r \cdot f) = P(r | f) \cdot P(f) = P(f | r) \cdot P(r),$  (2) где P(r | f) и P(f | r) – условные вероятности [22]; 3) между концентрациями вещества в воде или донных отложениях, слоем водного стока и площадью водосбора при определенных условиях [21] существует связь, ориентировочно имеющая вид:

$$C = C_0 \cdot \frac{Y_0}{Y} \cdot \left(\frac{F_0}{F}\right)^k, \tag{3}$$

где C, Y, F – концентрация вещества (мг/дм<sup>3</sup> или мг/кг), слой водного стока (мм) и площадь водосбора (км<sup>2</sup>) в расчетном створе;  $C_0, Y_0, F_0$  – концентрация вещества (мг/дм<sup>3</sup> или мг/кг), слой водного стока (мм) и площадь водосбора (км<sup>2</sup>) в истоках реки без выраженной русловой сети; k – эмпирический коэффициент; 4) анализ взаимосвязанности геологических, геоморфологических и гидрологических процессов сводится к оценке вероятностей P(r), P(f), P(r:f), P(r|f),площадей  $F_0$  и F, соответствующих им значений Yи  $Y_0$ , расчету коэффициентов корреляции, погрешностей их определения и выявлению регрессионных зависимостей, которые признавались удовлетворительными при условии  $R^2 > 0,36$ , где  $R^2$  – квадрат корреляционного отношения [10].

В рассматриваемой работе длины водотоков, площади водосборов, протяженность тектонических нарушений и участков совпадений речных долин и тектонических нарушений определялись по цифровым топографической (масштаб 1:50 000) и геологической (масштаб 1:200 000) картам северной части Вьетнама в формате MapInfo с учетом [19]. Совпадение оценивалось по огибающей кривой, которая проводилась по излучинам реки с учетом ширины долины и удвоенной погрешности определения расстояния по карте в размере 0,5 мм в масштабе карты [25]. Результаты определения морфометрических характеристик исследуемых рек приведены в табл. 1, совмещенная схема речной сети и тектонических нарушений – на рис. 1. При расчете слоя стока рассматривались два варианта: 1)  $Y_0 \approx Y$ ; 2) величина  $Y_0$  определяется для конкретной реки путем аппроксимации линии нелинейного тренда, полученного по данным измерений расходов воды.

#### Результаты исследования

Отбор проб воды и донных отложений выполнялся в меженный период, когда водный сток рек формируется в основном за счет притока подземных вод (рис. 2). Речные воды в этот период, по классификации О.А. Алекина [1], характеризуются как пресные с минерализацией от очень малой до средней, гидрокарбонатные кальциевые первого, второго и третьего типов; по величине pH воды – нейтральные и слабощелочные (табл. 2). Водные вытяжки из донных отложений в целом характеризуются как пресные, гидрокарбонатные кальциевые третьего типа, слабощелочные, по сравнению с речными водами содержат заметно большее количество Zn и Pb (табл. 2, 3).

Анализ полученных данных позволил выявить статистически значимые связи между условной вероятностью приуроченности речной сети к тектоническим нарушениям P(r|f) и концентрациями веществ в речных водах и донных отложениях (рис. 3), причем также обнаружена связь между условной вероятностью P(r|f) и эмпирической вероятностью концентраций (рис. 4). Удовлетворительная сходимость измеренных и расчетных концентраций Zn и Pb в речных водах и донных отложениях достигнута и при использовании зависимости (3) как для случаев, когда  $Y_0 \approx Y$  [22], так и для расчетных значений Y<sub>0</sub> (рис. 5). В последнем случае получены более точные оценки, но использование этого способа возможно только при наличии не менее двух измерений расходов воды на исследуемой реке.

В целом на территориях водосборов изученных рек, где ведется добыча свинцово-цинковых руд, пункты с повышенными концентрациями Zn, Pb и некоторых других элементов приурочены, с одной стороны, к участкам совмещения речной сети, часть водотоков которых приурочено к тектоническим нарушениям, контролирующим размещение свинцово-цинковых проявлений и месторождений, что объясняется усилением выноса химических элементов из рудных тел. С другой стороны, повышение концентраций этих элементов относительно локального геохимического фона в целом тем выше, чем общирнее слабо дренируемая площадь водосбора NM 15

NM 17

Та Диенг

Та Диенг

Моделирование геообъектов и геопроцессов

| Μ      | орфометричес | кие характерист | ики рек Ба    | тхи, Ченг                  | у, Дай, Фо                | Дай, Намду       | , Та Диенг, Ка                       | y        |
|--------|--------------|-----------------|---------------|----------------------------|---------------------------|------------------|--------------------------------------|----------|
| N⁰     | Река         | Куда впадает    | <i>L</i> , км | <i>F</i> , км <sup>2</sup> | $F_{U}$ , км <sup>2</sup> | <i>L(r)</i> , км | <i>L</i> ( <i>r</i> , <i>f</i> ), км | L(ƒ), км |
| NM 03  | Бантхи       | р. Гам          | 5,6           | 23                         | 7                         | 10,1             | 3,5                                  | 4,8      |
| NM 05a | Бантхи       | р. Гам          | 7,9           | 54                         | 20                        | 18,5             | 9,8                                  | 11,0     |
| NM 02  | Бантхи       | р. Гам          | 10,6          | 119                        | 27                        | 47,1             | 13,3                                 | 19,1     |
| M1604  | Бантхи       | р. Гам          | 3,68          | 16,1                       | 4                         | 9,1              | 2,5                                  | 3,8      |
| M1603  | Бантхи       | р. Гам          | 7,84          | 71,4                       | 20                        | 19,4             | 9,8                                  | 11,0     |
| M1602  | Бантхи       | р. Гам          | 8,99          | 75,4                       | 27                        | 20,5             | 9,8                                  | 11,0     |
| M1601  | Бантхи       | р. Гам          | 13,14         | 134                        | 27                        | 74,6             | 13,3                                 | 19,1     |
| NM 01  | Ченгу        | р. Бантхи       | 6,5           | 43                         | 7                         | 22,3             | 3,5                                  | 8,1      |
| M1605  | Ченгу        | р. Бантхи       | 7,98          | 48                         | 7                         | 24,6             | 3,5                                  | 8,1      |
| NM 05в | Дай          | р. Ло           | 13,8          | 45                         | 7                         | 13,9             | 8,6                                  | 11,6     |
| M1611  | Дай          | р. Ло           | 16,12         | 43,8                       | 7,7                       | 14,5             | 8,6                                  | 11,6     |
| M1609  | Дай          | р. Ло           | 29,57         | 110,5                      | 12                        | 34,5             | 15,8                                 | 30,6     |
| M1608  | Дай          | р. Ло           | 32,82         | 164,8                      | 13                        | 63,4             | 27,9                                 | 58,6     |
| M1607  | Дай          | р. Ло           | 41,68         | 182,3                      | 23                        | 135,8            | 41,3                                 | 87,6     |
| M1610  | Намду        | р. Дай          | 11,32         | 40,8                       | 6                         | 22,6             | 7,5                                  | 30,0     |
| NM 11  | Фо Дай       | р. Дай          | 13,3          | 33                         | 4                         | 17,0             | 0,1                                  | 0,8      |
| NM 09  | Фо Дай       | р. Дай          | 26,5          | 129                        | 10                        | 64,4             | 12,1                                 | 26,0     |
| M1606  | Фо Дай       | р. Дай          | 32,9          | 129                        | 10                        | 63,9             | 11,6                                 | 25,5     |
| NM 13  | Кау          | р. Красная      | 15            | 78                         | 15                        | 26,1             | 6,8                                  | 13,0     |

**Примечание:** L – длина реки от истока до створа; F – площадь водосбора;  $F_U$  – площадь водосбора в истоках реки без выраженной русловой сети; L(r) – протяженность русловой сети в пределах водосбора в створе пункта пробоотбора; L(f) – протяженность тектонических нарушений в пределах водосбора в створе пункта пробоотбора; L(r, f) – протяженность совпадающих русловой сети и тектонических нарушений

105

134

12,7

19,3

оз. Бабе

оз. Бабе

12

13

30,8

42,1

11,2

14,4

37,3

47,4



Рис. 2. Внутригодовое распределение слоя атмосферных осадков (X) и водного стока (Y) реки Гам в створе Чемхоа в среднем за многолетний период

Таблица 1

| геопроцессов |
|--------------|
| Z            |
| геообъектов  |
| пирование    |
| Цеј          |
| Jo,          |
|              |

Таблица 2

Nº 1

Химический состав речных вод в междуречье рек Гам и Кау

| Объект*     | Дата отбора | Водосбор | μd   | $\sum_{mi}$ | $NO_2^{-}$ | ${\rm NH_4^+}$ | Si              | Fe     | Ч     | Cu  | Zn    | Cd              | Pb   |
|-------------|-------------|----------|------|-------------|------------|----------------|-----------------|--------|-------|-----|-------|-----------------|------|
|             | •<br>-      | реки     |      |             |            | MI/J           | (M <sup>3</sup> |        |       |     | MKI/  | цм <sup>3</sup> |      |
| ки (5,6)    | 14.02.15    | Бан Тхи  | 7,70 | 335,7       | 0,044      | 0,210          | 4,33            | 0,130  | 0,040 | 2,0 | 140,0 | 0,44            | 18,0 |
| хи (7,9)    | 14.02.15    | Бан Тхи  | 8,00 | 319,9       | 0,028      | 0,150          | 4,18            | 0,100  | 0,143 | 2,2 | 80,0  | 0,15            | 11,0 |
| ки (10,6)   | 14.02.15    | Бан Тхи  | 8,00 | 326,3       | 0,033      | 0,170          | 4,58            | 0,130  | 0,253 | 1,1 | 51,0  | 0,09            | 7,3  |
| Гхи (3,7)   | 19.02.16    | Бан Тхи  | 7,53 | 309,6       | 0,010      | 0,025          | 4,87            | 0,098  | 0,011 | 0,3 | 15,1  | 0,10            | 7,8  |
| Гхи (7,8)   | 19.02.16    | Бан Тхи  | 7,47 | 315,9       | 0,500      | 0,025          | 3,85            | 0,062  | 0,009 | 0,5 | 74,8  | 0,40            | 12,1 |
| Тхи (9,0)   | 19.02.16    | Бан Тхи  | 8,00 | 333,3       | 0,010      | 0,025          | 3,97            | 0,060  | 0,005 | 0,3 | 70,6  | 0,12            | 4,7  |
| Хи (13,1)   | 19.02.16    | Бан Тхи  | 7,61 | 318,4       | 0,010      | 0,025          | 4,53            | 0,089  | 0,011 | 0,4 | 48,1  | 0,14            | 5,4  |
| ry (6,5)    | 14.02.15    | Бан Тхи  | 8,03 | 292,1       | 0,010      | 0,140          | 4,93            | 0,170  | 0,155 | 2,1 | 8,6   | 0,02            | 1,3  |
| ITY (8,0)   | 19.02.16    | Бан Тхи  | 7,50 | 290,0       | 0,010      | 0,025          | 4,99            | 0,172  | 0,016 | 0,4 | 1,3   | 0,02            | 2,2  |
| й (13,8)    | 15.02.15    | Дай      | 7,75 | 283,6       | 0,010      | 0,120          | 7,01            | 0,120  | 0,142 | 1,8 | 58,0  | 0,13            | 4,6  |
| й (16,1)    | 20.02.16    | Дай      | 7,51 | 277,0       | 0,010      | 0,025          | 6,42            | 0, 196 | 0,030 | 1,4 | 89,1  | 0,50            | 58,7 |
| й (29,6)    | 20.02.16    | Дай      | 7,87 | 231,0       | 0,010      | 0,025          | 7,07            | 0,125  | 0,013 | 0,6 | 3,6   | 0,04            | 4,8  |
| ій (32,8)   | 20.02.16    | Дай      | 7,89 | 224,7       | 0,010      | 0,025          | 5,96            | 0,138  | 0,008 | 0,5 | 2,3   | 0,04            | 2,4  |
| ій (41,7)   | 20.02.16    | Дай      | 7,60 | 193,3       | 0,010      | 0,025          | 7,87            | 0,365  | 0,024 | 2,5 | 3,6   | 0,03            | 3,0  |
| іду (11,3)  | 20.02.16    | Дай      | 7,52 | 264,5       | 0,010      | 0,025          | 5,01            | 0,067  | 0,003 | 0,4 | 7,5   | 0,08            | 0,6  |
| Дай (13,3)  | 15.02.15    | Дай      | 7,45 | 87,7        | 0,041      | 0,120          | 10,42           | 0,480  | 0,328 | 2,0 | 6,7   | 0,10            | 1,0  |
| Цай (26,5)  | 16.02.15    | Дай      | 7,40 | 92,6        | 0,031      | 0,180          | 11,29           | 0,230  | 0,070 | 1,1 | 8,5   | 0,30            | 0,5  |
| Іай (32,9)  | 20.02.16    | Дай      | 7,12 | 102.6       | 0.010      | 0,025          | 9,73            | 0,662  | 0,018 | 0,8 | 1, 1  | 0,02            | 0,4  |
| iy (15,0)   | 16.02.15    | Kay      | 7,50 | 74,0        | 0,044      | 0,150          | 8,91            | 0,250  | 0,464 | 1,7 | 6,8   | 0,02            | 1,5  |
| иенг (12,7) | 16.02.15    | Та Диенг | 7,50 | 178,3       | 0,027      | 0,190          | 7,44            | 0,190  | 0,141 | 1,9 | 29,0  | 0,03            | 1,3  |
| иенг (19,3) | 16.02.15    | Та Диенг | 7,80 | 189,6       | 0,053      | 0,150          | 6,58            | 0,150  | 0,172 | 2,2 | 8,3   | 0,03            | 1,5  |
| $G_{up}$    |             |          | I    | 300,9       | 0,026      | 0,111          | 7,50            | 0,172  | 0,078 | 1,6 | 34,1  | 0,09            | 5,0  |

48

Таблица 3

Геоинформатика-2017

Химический состав водных вытяжек из донных отложений рек в междуречье рек Гам и Кау

| Pb             |               | 1430             | 4070             | 1530             | 180               | 27             | 180           | 100           | 140           | 59            | 170             | 37               | 572      |
|----------------|---------------|------------------|------------------|------------------|-------------------|----------------|---------------|---------------|---------------|---------------|-----------------|------------------|----------|
| Cd             | г/ <b>к</b> г | 8,3              | 19,0             | 4,9              | 2,1               | 0,3            | 1,7           | 1,0           | 1,6           | 1,0           | 3,9             | 0,2              | 3,7      |
| Zn             | MKI           | 2020             | 3690             | 1520             | 270               | 33             | 180           | 53            | 67            | 46            | 170             | 15               | 634      |
| Си             |               | 86               | 340              | 140              | 120               | 100            | 54            | 66            | 100           | 66            | 84              | 39               | 126      |
| AI             |               | 3,03             | 2,51             | 0,85             | 1,30              | 0,30           | 0,23          | 0,78          | 0,37          | 0,32          | 1,47            | 2,41             | 2,00     |
| Fe             |               | 12,54            | 6,54             | 1,88             | 1,60              | 0,61           | 1,66          | 1,54          | 3,10          | 2,13          | 3,16            | 3,21             | 3,89     |
| Si             | ır            | 13,25            | 11,21            | 6,35             | 12,03             | 8,43           | 13,70         | 15,56         | 11,10         | 6,69          | 9,70            | 12,14            | 13,69    |
| ${\rm NH_4}^+$ | ML/K          | 20,85            | 1,60             | 3,75             | 17,50             | 10,60          | 39,00         | 22,00         | 20,25         | 23,40         | 5,25            | 29,70            | 31,28    |
| $NO_2^-$       |               | 0,95             | 0,95             | 0,15             | 2,50              | 0,50           | 1,10          | 0,40          | 0,45          | 0,65          | 0,45            | 0,55             | 0,93     |
| $\sum_{mi}$    |               | 499,4            | 679,9            | 762,0            | 862,9             | 806,4          | 1922,4        | 915,1         | 782,0         | 751,6         | 434,5           | 383,3            | 883,4    |
| рН             |               | 7,55             | 26'L             | 7,85             | 7,75              | 7,80           | 7,40          | 7,60          | 7,60          | 7,65          | 8,00            | 7,50             | I        |
| Дата отбора    |               | 19.02.16         | 19.02.16         | 19.02.16         | 19.02.16          | 19.02.16       | 20.02.16      | 20.02.16      | 20.02.16      | 20.02.16      | 20.02.16        | 20.02.16         |          |
| Объект*        |               | р. Бан Тхи (3,7) | р. Бан Тхи (7,8) | р. Бан Тхи (9,0) | р. Бан Тхи (13,1) | р. Ченгу (8,0) | р. Дай (16,1) | р. Дай (29,6) | р. Дай (32,8) | р. Дай (41,7) | р. Намду (11,3) | р. Фо Дай (32,9) | $G_{up}$ |
| õ              |               | M1604            | M1603            | M1602            | M1601             | M1605          | M1611         | M1609         | M1608         | M1607         | M1610           | M1606            |          |

Nº 1



Рис. 3. Зависимость между условной вероятностью *P*(*r*|*f*) и содержаниями Zn и Pb в водных вытяжках из донных отложений малых рек; линии тренда: сплошная линия синего цвета – Zn = 0,00393·exp(6,57655·*P*(*r*|*f*)), *R*<sup>2</sup> = 0,55; пунктир коричневого цвета – Pb = 0,00626·exp(5,98780·P(r|f)), *R*<sup>2</sup> = 0,57

Рис. 4. Зависимость между эмпирической вероятностью концентраций Zn в донных отложениях и условной вероятностью *P*(*r*|*f*); *P*(Zn) = 0,86·P(*r*|*f*), *R*<sup>2</sup> = 0,53

Рис. 5. Зависимость между функциями содержаний C(Zn) и C(Pb) в речных водах и соотношением площадей  $F/F_0$ ; линии тренда: сплошная линия синего цвета –  $\Phi(I) = C(Zn) \cdot Y/Y_0 = 1575,540 \cdot (F/F_0)^{-3,140},$   $R^2 = 0,83$ ; пунктир коричневого цвета  $\Phi(I) = C(Pb) \cdot Y/Y_0 = 95,211 \cdot (F/F_0)^{-2.422}, R^2 = 0,63$ 

в районе проявлений и чем ближе аномалия находится от предприятий по добыче и переработки руд.

Выявленные зависимости удовлетворительно описывают распределение химических элементов в водных объектах на разном удалении от предприятий по добыче и обогащению свинцово-цинковых руд. Так, изъятие из выборки значений, полученных вблизи от горно-обогатительных фабрик (NM03, NM05, М1603, М1611) не привело к изменению условия  $R^2 > 0.36$  и формы линии связи. Коэффициенты корреляции между условной вероятностью P(r|f) и содержанием составляют для: 1) Zn в речных водах – по полной выборке  $0,73 \pm 0,16$ , для сокращенной  $0,73\pm0,12;$  2) Zn в водных вытяжках из донных отложений – по полной выборке  $0.70\pm0.16$ , для сокращенной 0,68±0,18; 3) Рb в речных водах – по полной выборке 0,44±0,18, для сокращенной 0,74±0,11; 4) Рb в водных вытяжках из донных отложений - по полной выборке  $0,69\pm0,16$ , для сокращенной  $0,74\pm0,18$ .

Основное отличие заключается, главным образом, в более высоких значениях вблизи предприятий.

## Заключение

Изучение распределения геохимических показателей речных вод и отложений в районе проявлений Zn и Pb в междуречье рек Гам и Кау показало, что вероятность обнаружения аномальных концентраций указанных элементов резко возрастает при условии P(r|f)>0,6 и  $F/F_0 < 6-7$ . Это позволяет использовать величины  $F/F_0$ , P(r|f),  $P(r \cdot f) - P(r) \cdot P(f)$  в качестве дополнительных гидрологических индикаторов увеличения вероятности выявления геохимических аномалий в северной части Вьетнама. Их физический смысл заключается в том, что: 1) первичный ореол рассеяния над рудным телом максимально сохраняется при минимальной дренированности территории; 2) на размещение вторичных ореолов рассеяния оказывают влияние близость ослабленных тектонических

Nº 1

зон и действующих горнорудных предприятий. Указанные показатели имеют вероятностную природу и могут эффективно использоваться только в комплексе с другими методами поисков полезных ископаемых и решения геоэкологических задач.

Ключевые слова: гидрологические показатели, свинцово-цинковые руды, геохимические аномалии, Вьетнам.

## ЛИТЕРАТУРА

1. Алёкин О.А. Основы гидрохимии. – Л. : Гидрометеоиздат, 1970. – 444 с.

2. Виноградова О.В., Хмелева Н.В. Русловые процессы и формирование аллювиальных россыпей золота. – М. : МГУ, 2009. – 171 с.

3. Головин А.А., Москаленко Н.Н., Ачкасов А.И. и др. Требования к производству и результатам многоцелевого геохимического картирования масштаба 1:200 000. – М. : ИМГРЭ, 2002. – 92 с.

4. Дао Мань Тиен. Методология и особенности геохимической специализации гранитоидных формаций Северного Вьетнама : дис. ... канд. геол.-минер. наук : 04.00.08. – Баку : Азербайджанский гос. ун-т, 1984. – 198 с.

5. Зверев В.П. Массопотоки подземной гидросферы. – М. : Наука, 1999. – 97 с.

6. Инструкция по геохимическим методам поисков рудных месторождений. – М. : Недра, 1965. – 228 с. 7. Кирюхин В.А. Проблемные вопросы гидрогеохимических исследований//Гидрогеохимические поиски месторождений полезных ископаемых / под ред Е.В. Пиннекера. – Новосибирск : Наука, 1990. – С. 5-10.

8. Колотов Б.А. Гидрогеохимия рудных месторождений. – М. : Недра, 1992. – 93 с.

9. Крайнов С.Р., Рыженко Б.Н., Швец В.М. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты. – М. : Наука, 2004. – 677 с. 10. Крицкий С.Н., Менкель М.Ф. Гидрологические основы управления водохозяйственными системами. – М. : Наука, 1982. – 271 с.

11. Лисицын А.П. Маргинальный фильтр океанов // Океанология. – 1994. – Т. 34. – № 5. – С. 735-747.

12. Лукин А.А. Морфоструктурно-гидрогеологический анализ проявления скрытых и открытых очагов разгрузки подземных вод в зоне интенсивного водообмена при гидрогеохимических поисках // Гидрогеохимические поиски месторождений полезных ископаемых / под ред Е.В. Пиннекера. – Новосибирск : Наука, 1990. – С. 44-52.

13. Михайлов В.Н. Гидрологические процессы в устьях рек. – М. : ГЕОС, 1997. – 172 с.

14. Нгуен Кинг Куок. Карта геологических условий и минеральных ресурсов в масштабе 1:200 000. Лист провинция Баккан F48-XV : на вьетнам. яз. – Ханой :

Главное управление геологии и полезных ископаемых Вьетнама, 2001.

15. Никаноров А.М., Страдомская А.Г. Химический состав органических и минеральных веществ иловых отложений незагрязненных водных объектов // Водные ресурсы. – 2006. – Т. 33. – № 1. – С. 71-77. 16. Перельман А.И. Геохимия ландшафта. – М. : Высш. шк., 1975. – 342 с.

17. Поликарпочкин В.В. Вторичные ореолы и потоки рассеяния. – Новосибирск : Наука, 1976. – 407 с.

18. Проведение расчетов фоновых концентраций химических веществ в воде водотоков. Методические указания. РД 52.24.622-2001. – М. : Росгидрометслужба, 2001. – 68 с.

19. Руководство по определению гидрографических характеристик картометрическим способом. – Л. : Гидрометеоиздат, 1986. – 93 с.

20. Савенко В.С. Геохимические проблемы глобального гидрологического цикла // Проблемы гидрологии и гидроэкологии / под ред. Н.И. Алексеевского. – М. : МГУ, 1999. – С. 48-72.

21. Савичев О.Г., Домаренко В.А. Закономерности изменения химического состава речных отложений и их использование в поисках полезных ископаемых // Фундаментальные исследования. – 2014. – № 6 (3). – С. 520-525.

22. Савичев О.Г., Нгуен В.Л. Гидроэкологическое состояние междуречья рек Гам и Кау (Северный Вьетнам) // Известия Томского политехнического университета. – 2015. – Т. 326. – №7. – С. 96-103.

23. Страховенко В.Д. Геохимия донных отложений малых континентальных озер Сибири : автореф. дис. ... д-ра геол.-минер. наук. – Новосибирск : ИГМ СО РАН, 2011. – 30 с.

24. Учет деформаций речных русел и берегов водоемов в зоне подводных переходов магистральных трубопроводов : ВСН 163-83. – М. : Госкомгидромет, 1985. – 142 с.

25. Чалов Р.С. Русловые процессы и гидроэкологическое состояние рек и приречных территорий // Проблемы гидрологии и гидроэкологии / под ред. Н.И. Алексеевского. – М. : МГУ, 1999. – С. 348-366. 26. Шварцев С.Л. Гидрогеохимия зоны гипергенеза. – М. : Недра, 1998. – 366 с.

27. Янин Е.П. Техногенные геохимические ассоциации в донных отложениях малых рек. – М. : ИМГРЭ, 2002. – 52 с.

28. Lerman A. Geochemical Processes: Water and Sediment Environments / A. Lerman. – New York : Wiley-Intersience Public., 1979. – 481 p.

29. Water Quality Assessments. A guide to use of biota, sediments and water in environmental monitoring. – 2nd edition / Ed. by D. Chapman ; UNESCO/WHO/UNEP. – London : Chapman & Hall, 1996. – 651 p.