Estimation of quality indicators of mineral resources using geoinformation technologies of block modeling.

№3 (2020)

Kantemirov V.D.,Yakovlev A.M.,Titov R.S.

AbstractAbout the AuthorsReferences

The article presents the results of developing a methodology for evaluating the quality indicators of minerals based on block modeling technologies using modern miningand geological information systems (GGIS). A flowchart for modeling quality indicators of mineral resources is proposed and the results of its use are shown on the example of the Serov complex ore and coal deposits of the Odegeldey section. The presented method of block modeling allows us to zone technological types and grades of ores with high confidence in the quarry space, which contributes to solving the problems of design, planning and production management in the conditions of economic uncertainty, deteriorating mining and geological and mining and technological conditions for the development of deposits.

Kantemirov Valery Danilovich, Ph.D., Quality management sector chief, Institute of Miningof Ural branch of RAS. 58 Mamina-Sibiryaka St., Yekaterinburg, 620075, Russia. E-mail: ukrkant@mail.ru.

Yakovlev Andrei Michailovich, senior researcher, Quality management sector, Institute of Miningof Ural branch of RAS. 58 Mamina-Sibiryaka St., Yekaterinburg, 620075, Russia. E-mail: quality@igduran.ru.

Titov Roman Sergeevich, senior researcher, Quality management sector, Institute of Miningof Ural branch of RAS. 58 Mamina-Sibiryaka St., Yekaterinburg, 620075, Russia. E-mail: ukrigd15@mail.ru.

1.Yakovlev V.L. Research of transition processes – a new methodological approach to the development and development of innovative technologies for mining and ore preparation of mineral raw materials in the development of deep-lying complex-structure deposits [Electronic resource] // Problems of subsurface use: peer-reviewed online periodical scientific publication / IGD Uro RAS. 2017. No. 2. P. 5-14.URL: https://igduran.ru/files/eshop/elibrary/2019-pereh-process.pdf (date ofaccess: 12.11.2019).

2. Kuznetsov O.L., Nikitin A.A., Cheremisina E.N. Geoinformatics and geoinformation systems. Moscow : VNIIgeosistem, 2005. 453 p.

3.Demyanov V.V., Saveleva E.A.Geostatistics: theory and practice / Institute of problems of safe development of nuclear energy of the Russian Academy of Sciences. Moscow : Nauka, 2010. 327p.

4. Kantemirov V.D., Titov R.S., Yakovlev A.M. Possibilities of computer modeling for solving issues of quality management of mineral raw materials [Electronic resource] // Problems of subsoil use : peer-reviewed online periodical scientific publication / IGD Uro RAS. 2016. No. 4. P.170-176. URL: https://trud.igduran.ru/edition/11/19 (date of access: 16.12.2019).

5. Yaskovsky P.P. Mining and geological conditions in the assessment of deposits. Moscow : MGGA, 2001. 37 p.

6.F. Dell’Accio, F. Di Tommaso. On the hexagonal Shepard method // Applied Numerical Mathematics. 2020, April. V. 150. P. 51-64.

7.Badel M., Angorani S., Shariat Panahi M. The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit// Computers & Geosciences. 2011, April. V. 37, Issue 4. P. 530-540.

8.Afzal P. Multi-Gaussian kriging: a practice to enhance delineation of mineralized zones by Concentration-Volume fractal model in Dardevey iron ore deposit, SE Iran / Peyman Afzal, Nasser Madani, Shahab Shahbeik, Amir Bijan Yasrebi// Journal of Geochemical Exploration. 2015. V. 158. P. 10-21.

9.Mohammadpour M. Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging / Mahyadin Mohammadpour,Abbas Bahroudi, Maysam Abedi, Gholamreza Rahimipour, Golnaz Jozanikohan,Farzaneh Mami Khalifani // Journal of Geochemical Exploration. 2019, May. V.200. – P. 13-26.

10. Afeni T.B., Akeju V.O., Aladejare A.E. A comparative study of geometric and geostatistical methods for qualitative reserve estimation of limestone deposit // Geoscience Frontiers, in press, journal pre-proof, Available online, 8 April 2020. URL:https://doi.org/10.1016/j.gsf.2020.02.019 (date of access: 12.05.2020).

11.Marques D.M. Choosing a proper sampling interval for the ore feeding aprocessing plant: A geostatistical solution / Diego M. Marques, João Felipe C.L. Costa // International Journal of Mineral Processing. 2014, September. V.131, 10. P. 31-42.

12.Mery N. Geostatistical modeling of the geological uncertainty in an iron ore deposit / Nadia Mery, Xavier Emery, Alejandro Cáceres, Diniz Ribeiro, Evandro Cunha // Ore Geology Reviews. 2017, August. V. 88. P. 336-351.

Keywords: mining and geological information system, GIS,quality characteristics of ores, block modeling, geometrization, geological database.

Section: Modeling geo objects and geo-processes