Nikitin A.A.,Plyushchenkov B.D.,Turchaninov V.I.
AbstractAbout the AuthorsReferences
Based on Biot model, describing the propagation of acoustic disturbances in isotropic porous medium saturated with viscous fluid, and viscoelasticity theory, the modified Biot model is proposed. Viscoelastic behavior in it is given with bulk and shear cementation coefficients, which determine the intergranular interactions. Viscoelastic non-porous medium and viscous fluid are considered as special cases of proposed model. The approximation way of viscoelastic modules is described by the rational functions, allowing their inclusion in our model reducing to calculation of convolutions with exponential kernels. Based on viscoelastic Biot model, the problem statement of acoustic fields’ modeling in axially symmetric case for multipole sources is set up. A method for its solution is presented by azimuthal angle decomposition, which includes the using of nonsplitting perfectly matched layer as boundary transparency conditions. A description of explicit second-order finite-difference scheme on shifted grids, approximating the equations of problem, and an economical method for convolutions’ calculating, which are also included in the transparency conditions, are given. Numerical results of modeling of acoustic laboratory experiment, dipole acoustic logging and seismic exploration are presented, which are compared and analyzed with similar ones obtained from analytical solutions.
Nikitin A.A., Lomonosov Assistant professor, PhD, Moscow State University, Faculty of Geology, associate professor Dubna State University, nikitin@geol.msu.ru.
Plyushchenkov Boris Danilovich, Senior staff scientist, PhD, Keldysh Institute of Applied Mathematics, Russian Academy of Science. Е-mail: plyushchenkov48@mail.ru.
- White J.E. Underground Sound: Application of Seismic Waves. Elsevier, 1983. 253 p.
- Favorskaia A.V., Petrov I.B., Golubev V.I., Khokhlov N.I. Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistviia zemletriaseniia na sooruzheniia // Matematicheskoe modelirovanie. 2015. V. 27, No. 12. P. 109-120.
- Aki K., Richards P.G. Quantitative Seismology: Theory and Methods. San Francisco : W.H. Freeman and Co. V. I. 1980. 557 p.
- Christensen R.M. Theory of Viscoelasticity: An Introduction. New York : Acad. Press, 1971. 245 p.
- Plyushchenkov B.D., Turchaninov V.I., Nikitin A.A. Modelirovaniye seysmoakusticheskikh poley v aksial’no-simmetrichnykh pogloshchayushchikh sredakh. Postanovka zadachi // Matematicheskoe modelirovanie. 2017. V. 29, No. 9. P. 62-76.
- Cаrcione J.M. Viscoelastic effective rheologies for modeling wave propagation in porous media // Geophysical Prospecting. 1998. V. 46. P. 249-270.
- Arntsen B., Carcione J.M. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone // Geophysics. 2009. V. 66, No. 3. P. 890-896.
- Dyshlyuk E., Parshin A.V., Charara M.G., Nikitin A.A., Plyushchenkov B.D. InSitu Viscosity from Acoustic Logging // SPE Annual Technical Conference and Exhibition, USA, Colorado, Den-ver, 30 Oct. – 2 Nov 2011 : Proceedings. SPE 146023, 2011. P. 1-12.
- Il’yasov Kh.Kh. Issledovaniye akusticheskikh voln v sloistykh gidrouprugikh sredakh // Dis. na soisk. uch. st. k.f.-m.n. : 01.02.05 / Institut problem mekhaniki RAN. Moscow, 2005.
- Biot M.A. Generalized theory of acoustic propagation in porous dissipative media // Journal Acoustic Society of America. 1962. V. 34, No. 9. P. 1254-1264.
- Mavko G., Mukerji T., Dvorkin J. The Rock Physics Handbook. Cambridge University Press, 2009. 329 p.
- Plyushchenkov B.D., Turchaninov V.I., Nikitin A.A. Modelirovaniye seysmoakusticheskikh poley v aksial’no-simmetrichnykh pogloshchayushchikh sredakh. Raznostnaya skhema // Matematicheskoe modelirovanie. 2018. V. 30, No. 4. P. 21-42.
- Ben-Menahem A., Singh S.J. Seismic Waves and Sources. New York : Springer-Verlag, 1981. 1126 p.
- Plyushchenkov B.D., Turchaninov V.I. Optimum approximation of convolution of arbitrary grid function with the power kernel // Poromechanics II / J.L. Auriault et al. (eds). Lisse : Swets and Zeitlinger, 2002. P. 753-756. ISBN 90 5809 394 8.
- Pliushchenkov B.D., Turchaninov V.I. Poshagovaia svertka // Preprint In. prikl. mat. im. M.V. Keldysha RAN. 2009. No. 24. 24 p. URL: http://library. keldysh.ru/ preprint.asp?id=2009-24 (date of access: 04.04.2019).
- Asvadurov S., Knizhnermanz L., Pabon J. Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude // Geophysics. 2004. V. 69, No. 3. P. 817-824.
- Johnson D.L., Koplik J., Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media // Journal of Fluid Mechan-ics. 1987. V. 176. P. 379-402.
- Johnson D.L. Scaling function for dynamic permeability in porous media // Phys. Rev. Lett. 1989. V. 63, No. 5. P. 580-583.
- Nikitin A.A., Plyushchenkov B.D., Segal A.Yu. Properties of low-frequency trapped mode in vis-cous-fluid waveguides // Geophysical Prospecting. 2016. V. 64, No. 5. P. 1335-1349.
- Plyushchenkov B.D., Turchaninov V.I. Solution of Pride’s equation through potentials // Int. J. Mod. Phys. C. 2006. V. 17, No. 6. P. 877-908.
- Liu H.-L., Johnson D.L. Effects of an elastic membrane on tube waves in permeable formations // Journal Acoustic Society of America. 1997. V. 101, No. 6. P. 3322-3329.
- Liu Q.H., Sinhaz B.K. A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations // Geophysics. 2003. V. 68, No. 5. P. 1731-1743.
- Wang T., Tang X. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach // Geophysics. 2003. V. 68, No. 5. P. 1749-1755.
- Plyushchenkov B.D., Turchaninov V.I. Acoustic logging modelling by refined Biot’s equations // Int. J. Mod. Phys. C. 2000. V. 11, No. 2. P. 365-396.
- Ryaben’kii V.S. Method of difference potentials and its applications. Springer Verlag, 2002. 538 p.
- Randall C.J., Scheibner D.J., Wu P.T. Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts // Geophysics. 1991. V. 56. No. 11. P. 1757-1769.
- Hua Y., Sarkar T.K. Matrix Pencil Method of Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise // IEEE Transactions on Acoustics : Speech and Signal Processing. 1990. V. 38, No. 5. P. 814-824.
- Tang X.M., Cheng A. Quantitative Borehole Acoustic Methods. Elsevier Ltd., Seismic Exploration. V. 24. 2004. 255 p.
- Brie D., Endo T., Johnson D.L., Pampuri F. Quantitative formation permeability evaluation from Stoneley waves // SPE 49131. 1998. P. 1-12.
- Plyushchenkov B.D., Nikitin A.A. Borehole Acoustic and Electric Stoneley Waves and Permeability // Journal of Computational Acoustics. 2010. V. 18, No. 2. P. 1-29.
- Wang K.-X., Ma J., Wu X.-Y., Zhang B.-X. Determination of permeability from flexural waves in dipole acoustic logging // SEG Technical Program Expanded Abstracts. 1999. P. 33-36.
- Boganik G.N., Gurvich I.I. Sesmorazvedka. Tver : Publishing house AIS, 2006. 744 p.
Section: Modeling geo objects and geo-processes
Kewords: viscoelasticity, Biot model, acoustic logging, seismic prospecting, mathematical modeling.