DDLAFS — QGIS plugin for dominant directions of the local active fault system estimation

№4 (2022)

Emelyanov I.V., Nekrasova A.K.

УДК 004.67
https://doi.org/10.47148/1609-364X-2022-4-54-62

AbstractAbout the AuthorsReferences
QGIS is a widely used open-source geographic information system. DDLAFS is a specialized plugin in Python to solve thematic problems. The plugin is designed as a set of functions allowing to calculate the dominant directions of the regional active fault system ψi. The estimation of the dominant directions of the local active fault system is given within a circular area ΔR, where R is a user-defined radius. The centres of regions ΔR should be represented by a set of point objects {g}. These may be epicentres of main shocks, seismogenic nodes, regular grid points, etc. If {g(M)} is represented by data on seismic events, R(g) can be determined depending on the magnitude M of a certain earthquake. The plugin provides an estimate of R(M) using the dependence [11]. For one area, n dominant directions can be determined, each of which corresponds to an empirical value of the probability density distribution of azimuths of active faults, {ψi, pi | i = 1, … n; Σpi = 1}.
The DDLAFS plugin is designed as part of an anisotropic seismic model in terms of macroseismic intensity [6].
Igor V. Emelyanov
Student 3-d year, Department of Geographic Information Systems,
MIREA — Russian Technological University
78, Vernadsky Avenue, Moscow, 119454, Russia
e-mail emelyanov.i.v@edu.mirea.ru

Anastasia K. Nekrasova
Candidate of Physical and Mathematical Sciences,
Principal Researcher
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
84/32, Profsoyuznaya str., Moscow, 117997, Russia
Postgraduate Program Lecturer of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
10 build. 1, Bolshaya Gruzinskaya str., Moscow, 123242, Russia
е-mail: nastia@mitp.ru
ORCID: 0000-0003-1639-1088

  1. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. The Active Faults of Eurasia Database. Geodynamics & Tectonophysics. 2017;8(4):711–736. DOI:
    10.5800/GT-2017-8-4-0314.
  2. Lunina O.V. The digital map of the Pliocene–Quaternary crustal faults in the Southern East Siberia and the adjacent Northern Mongolia.
    Geodynamics & Tectonophysics. 2016;7(3):407–434. DOI: 10.5800/GT-2016-7-3-0215.
  3. Pashkovskaya O.V., Novoselov O.V., Potapenko I.A. Data analysis in geographic information system QGIS. In: Reshetnevskie chteniya: Materialy
    XXIV Mezhdunar. nauch.-prakt. konf. pamyati akad. M.F. Reshetneva ((Krasnoyarsk, 10-13 November 2020). Pt. 2. Krasnoyarsk: SiBGU im.
    M.F. Reshetneva, 2020. pp. 345–346.
  4. Ulomov V.I., Medvedeva N.S. (eds.) Spetsializirovannyi katalog zemletryasenii dlya zadach obshchego seismicheskogo raionirovaniya territorii
    Rossiiskoi Federatsii [Specialized catalog of earthquakes for tasks of general seismic zoning of the territory of the Russian Federation]. Available at:
    http://seismos-u.ifz.ru/documents/Eartquake-Catalog-%D0%A1%D0%9A%D0%97.pdf (accessed 15.11.2022).
  5. Basili R., Kastelic V., Demircioglu M. B. et. al. The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project
    SHARE. // 2013. DOI: 10.6092/INGV.IT-SHARE-EDSF.
  6. Nekrasova A., Kossobokov V. The Lake Baikal Region anisotropic seismic impact modelling for realistic assessment of associated risks and disaster
    scenarios. In: Proceedings of the Third European Conference on Earthquake Engineering and Seismology – 3ECEES (Bucharest, 5–9 September
    2022). Arion C., Scupin A., Ţigănescu A., eds. Bucureşti: Conspress; 2022. pp. 3915-3921.
  7. Nurminen F., Baize S., Boncio P., Blumetti A.M., Cinti F.R., Civico R., Guerrieri L. SURE 2.0 [Data set]. Zenodo. 2022. Available at: https://zenodo.
    org/record/7020265#.Y3S0POrP0cU (accessed 16.11.2022). DOI: 10.5281/zenodo.7020265.
  8. Panza G.F., Bela J. NDSHA: A new paradigm for reliable seismic hazard assessment. Engineering Geology. 2020;275:105403. DOI: 10.1016/j.
    enggeo.2019.105403.
  9. Parvez I.A., Magrin A., Vaccari F., Ashish, Mir R.R., Peresan A., Panza G.F. Neo-deterministic seismic hazard scenarios for India — a preventive tool
    for disaster mitigation. Journal of Seismology. 2017;21:1559–1575. DOI: 10.1007/s10950-017-9682-0.
  10. Vincenty Th. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations. Survey Review. 1975;23(176):88–
    93. DOI: 10.1179/sre.1975.23.176.88.
  11. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface
    displacement. Bulletin of the Seismologipcal Society of America. 1994;84(4):974-1002. DOI: 10.1785/BSSA0840040974.

Key words: QGIS, plugin, anisotropic propagation, dominant direction, active faults

Section: Conference proceedings ITES-2022